Cargando…
Exploiting probability density function of deep convolutional autoencoders’ latent space for reliable COVID-19 detection on CT scans
We present a probabilistic method for classifying chest computed tomography (CT) scans into COVID-19 and non-COVID-19. To this end, we design and train, in an unsupervised manner, a deep convolutional autoencoder (DCAE) on a selected training data set, which is composed only of COVID-19 CT scans. On...
Autores principales: | Sarv Ahrabi, Sima, Piazzo, Lorenzo, Momenzadeh, Alireza, Scarpiniti, Michele, Baccarelli, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867464/ https://www.ncbi.nlm.nih.gov/pubmed/35228777 http://dx.doi.org/10.1007/s11227-022-04349-y |
Ejemplares similares
-
A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection
por: Scarpiniti, Michele, et al.
Publicado: (2022) -
How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study
por: Sarv Ahrabi, Sima, et al.
Publicado: (2022) -
Twinned Residual Auto-Encoder (TRAE)—A new DL architecture for denoising super-resolution and task-aware feature learning from COVID-19 CT images
por: Baccarelli, Enzo, et al.
Publicado: (2023) -
Optimization of physical quantities in the autoencoder latent space
por: Park, S. M., et al.
Publicado: (2022) -
Hybrid autoencoder with orthogonal latent space for robust population structure inference
por: Yuan, Meng, et al.
Publicado: (2023)