Cargando…
Development of AI-driven prediction models to realize real-time tumor tracking during radiotherapy
BACKGROUND: In infrared reflective (IR) marker-based hybrid real-time tumor tracking (RTTT), the internal target position is predicted with the positions of IR markers attached on the patient’s body surface using a prediction model. In this work, we developed two artificial intelligence (AI)-driven...
Autores principales: | Zhou, Dejun, Nakamura, Mitsuhiro, Mukumoto, Nobutaka, Tanabe, Hiroaki, Iizuka, Yusuke, Yoshimura, Michio, Kokubo, Masaki, Matsuo, Yukinori, Mizowaki, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867830/ https://www.ncbi.nlm.nih.gov/pubmed/35197087 http://dx.doi.org/10.1186/s13014-022-02012-7 |
Ejemplares similares
-
Feasibility study of deep learning‐based markerless real‐time lung tumor tracking with orthogonal X‐ray projection images
por: Zhou, Dejun, et al.
Publicado: (2022) -
Baseline correction of a correlation model for improving the prediction accuracy of infrared marker‐based dynamic tumor tracking
por: Akimoto, Mami, et al.
Publicado: (2015) -
Effect of audio instruction on tracking errors using a four‐dimensional image‐guided radiotherapy system
por: Nakamura, Mitsuhiro, et al.
Publicado: (2013) -
Evaluation of Dynamic Tumor-tracking Intensity-modulated Radiotherapy for Locally Advanced Pancreatic Cancer
por: Nakamura, Akira, et al.
Publicado: (2018) -
The impact of abdominal compression on outcome in patients treated with stereotactic body radiotherapy for primary lung cancer
por: Mampuya, Wambaka Ange, et al.
Publicado: (2014)