Cargando…
Accurate training of the Cox proportional hazards model on vertically-partitioned data while preserving privacy
BACKGROUND: Analysing distributed medical data is challenging because of data sensitivity and various regulations to access and combine data. Some privacy-preserving methods are known for analyzing horizontally-partitioned data, where different organisations have similar data on disjoint sets of peo...
Autores principales: | Kamphorst, Bart, Rooijakkers, Thomas, Veugen, Thijs, Cellamare, Matteo, Knoors, Daan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867891/ https://www.ncbi.nlm.nih.gov/pubmed/35209883 http://dx.doi.org/10.1186/s12911-022-01771-3 |
Ejemplares similares
-
Privacy-preserving dataset combination and Lasso regression for healthcare predictions
por: van Egmond, Marie Beth, et al.
Publicado: (2021) -
Tests for the proportional hazards assumption in the Cox model
por: Reiersølmoen, L, et al.
Publicado: (2001) -
On Cox proportional hazards model performance under different sampling schemes
por: Samawi, Hani, et al.
Publicado: (2023) -
Comparison of Cox proportional hazards regression and generalized Cox regression models applied in dementia risk prediction
por: Goerdten, Jantje, et al.
Publicado: (2020) -
Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models
por: Emura, Takeshi, et al.
Publicado: (2012)