Cargando…

A structurally unique Fusobacterium nucleatum tannase provides detoxicant activity against gallotannins and pathogen resistance

Colorectal cancer pathogenesis and progression is associated with the presence of Fusobacterium nucleatum and the reduction of acetylated derivatives of spermidine, as well as dietary components such as tannin‐rich foods. We show that a new tannase orthologue of F. nucleatum (TanBF(nn)) has signific...

Descripción completa

Detalles Bibliográficos
Autores principales: Mancheño, José Miguel, Atondo, Estíbaliz, Tomás‐Cortázar, Julen, Luís Lavín, José, Plaza‐Vinuesa, Laura, Martín‐Ruiz, Itziar, Barriales, Diego, Palacios, Ainhoa, Daniel Navo, Claudio, Sampedro, Leticia, Peña‐Cearra, Ainize, Ángel Pascual‐Itoiz, Miguel, Castelo, Janire, Carreras‐González, Ana, Castellana, Donatello, Pellón, Aize, Delgado, Susana, Ruas‐Madiedo, Patricia, de las Rivas, Blanca, Abecia, Leticia, Muñoz, Rosario, Jiménez‐Osés, Gonzalo, Anguita, Juan, Rodríguez, Héctor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867971/
https://www.ncbi.nlm.nih.gov/pubmed/33336898
http://dx.doi.org/10.1111/1751-7915.13732
Descripción
Sumario:Colorectal cancer pathogenesis and progression is associated with the presence of Fusobacterium nucleatum and the reduction of acetylated derivatives of spermidine, as well as dietary components such as tannin‐rich foods. We show that a new tannase orthologue of F. nucleatum (TanBF(nn)) has significant structural differences with its Lactobacillus plantarum counterpart affecting the flap covering the active site and the accessibility of substrates. Crystallographic and molecular dynamics analysis revealed binding of polyamines to a small cavity that connects the active site with the bulk solvent which interact with catalytically indispensable residues. As a result, spermidine and its derivatives, particularly N(8)‐acetylated spermidine, inhibit the hydrolytic activity of TanBF(nn) and increase the toxicity of gallotannins to F. nucleatum. Our results support a model in which the balance between the detoxicant activity of TanBF(nn) and the presence of metabolic inhibitors can dictate either conducive or unfavourable conditions for the survival of F. nucleatum.