Cargando…

A novel algorithm for detection of COVID-19 by analysis of chest CT images using Hopfield neural network

BACKGROUND: Widely spread of the COVID-19 virus has put the whole world in jeopardy. At this moment, using new techniques to detect and treat this novel disease is of significance or maybe the first priority of many scientists and researchers throughout the world. PURPOSE: To present a new algorithm...

Descripción completa

Detalles Bibliográficos
Autores principales: Sani, Saeed, Shermeh, Hossein Ebrahimzadeh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867982/
https://www.ncbi.nlm.nih.gov/pubmed/35228781
http://dx.doi.org/10.1016/j.eswa.2022.116740
Descripción
Sumario:BACKGROUND: Widely spread of the COVID-19 virus has put the whole world in jeopardy. At this moment, using new techniques to detect and treat this novel disease is of significance or maybe the first priority of many scientists and researchers throughout the world. PURPOSE: To present a new algorithm for detecting the novel coronavirus 2019 using chest CT images with high accuracy. MATERIALS AND METHODS: In this study, we looked at the newly-presented data and detection methods of this disease using chest CT; then, a new neural network algorithm was presented to recognize the COVID-19 symptoms. A mathematical model is used to enhance the accuracy of masking, and a high accuracy Hopfield Neural Network (HNN) is used for finding symptoms. A dataset of CT scans, including 12 pattern images, was trained by this neural network, and 295CT images from three different datasets were tested via the model. RESULTS: The sensitivity and specificity of the model for detecting COVID-19 in test data were 97.4% (149 of 153) and 98.6% (140 of 142) respectively. Also, the sensitivity and specificity of the model for detecting CAP (community-acquired pneumonia) in test data were 97.3% (106 of 109) and 99.5% (185 of 186) respectively, and, the sensitivity and specificity of the model for detecting non-pneumonia patients were 100% (33 of 33) and 98.5% (258 of 262) respectively. CONCLUSION: This new algorithm can potentially help detect the novel Coronavirus patients using CT images.