Cargando…

The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes

SIMPLE SUMMARY: The permeability of the plasma membrane to water and cryoprotectants is a critical factor in the effective vitrification of oocytes. The goal of this study is to better understand the pathways used to transport water and other cryoprotectants through the plasma membrane of bovine in...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Martínez, Tania, Martínez-Rodero, Iris, Roncero-Carol, Joan, Vendrell-Flotats, Meritxell, Gardela, Jaume, Gutiérrez-Adán, Alfonso, Ramos-Ibeas, Priscila, Higgins, Adam Z., Mogas, Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868131/
https://www.ncbi.nlm.nih.gov/pubmed/35203238
http://dx.doi.org/10.3390/ani12040530
_version_ 1784656191692996608
author García-Martínez, Tania
Martínez-Rodero, Iris
Roncero-Carol, Joan
Vendrell-Flotats, Meritxell
Gardela, Jaume
Gutiérrez-Adán, Alfonso
Ramos-Ibeas, Priscila
Higgins, Adam Z.
Mogas, Teresa
author_facet García-Martínez, Tania
Martínez-Rodero, Iris
Roncero-Carol, Joan
Vendrell-Flotats, Meritxell
Gardela, Jaume
Gutiérrez-Adán, Alfonso
Ramos-Ibeas, Priscila
Higgins, Adam Z.
Mogas, Teresa
author_sort García-Martínez, Tania
collection PubMed
description SIMPLE SUMMARY: The permeability of the plasma membrane to water and cryoprotectants is a critical factor in the effective vitrification of oocytes. The goal of this study is to better understand the pathways used to transport water and other cryoprotectants through the plasma membrane of bovine in vitro matured oocytes, with a focus on the role of aquaporin 7 (AQP7). We demonstrated that cryoprotectants stimulated AQP3 and AQP7 but not AQP9 expression in mature bovine oocytes. Dimethyl sulfoxide upregulates AQP3 expression, while ethylene glycol upregulates AQP7 expression in oocytes in a CPA-dependent fashion. We also demonstrated that exogenous expression of aquaglyceroporins such as AQP7 is possible in in vitro matured oocytes. When permeability values for membrane transport of dimethyl sulfoxide, ethylene glycol and sucrose were assessed, we observed that AQP7 overexpressed oocytes are more permeable to water in the presence of dimethyl sulfoxide solution. These biophysical characteristics, together with the use of membrane transport modeling, will allow re-evaluation and possibly improvement of previously described protocols for bovine oocyte cryopreservation. ABSTRACT: Aquaglyceroporins are known as channel proteins, and are able to transport water and small neutral solutes. In this study, we evaluate the effect of exposure of in vitro matured bovine oocytes to hyperosmotic solutions containing ethylene glycol (EG), dimethyl sulfoxide (Me(2)SO) or sucrose on the expression levels of AQP3, AQP7 and AQP9. Moreover, we studied whether artificial protein expression of AQP7 in bovine oocytes increases their permeability to water and cryoprotectants. Exposure to hyperosmotic solutions stimulated AQP3 and AQP7 but not AQP9 expression. Oocytes exposed to hyperosmotic Me(2)SO solution exhibited upregulated AQP3 expression, while AQP7 expression was upregulated by EG hyperosmotic exposure. Microinjection of oocytes at the germinal vesicle stage with enhanced green fluorescent protein (EGFP) or EGFP+AQP7 cRNAs resulted in the expression of the corresponding proteins in ≈86% of the metaphase-II stage oocytes. AQP7 facilitated water diffusion when bovine MII oocytes were in presence of Me(2)SO solution but not EG or sucrose solution. However, the overexpression of this aquaporin did not increase membrane permeability to Me(2)SO or EG. In summary, cryoprotectant-induced increase of AQP3 and AQP7 expression could be one of the mechanisms underlying oocyte tolerance to hyperosmotic stress. Water diffusion appears to be improved when AQP7 overexpressed oocytes are exposed to Me(2)SO, shortening the time required for oocytes to achieve osmotic balance with cryoprotectant solutions.
format Online
Article
Text
id pubmed-8868131
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88681312022-02-25 The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes García-Martínez, Tania Martínez-Rodero, Iris Roncero-Carol, Joan Vendrell-Flotats, Meritxell Gardela, Jaume Gutiérrez-Adán, Alfonso Ramos-Ibeas, Priscila Higgins, Adam Z. Mogas, Teresa Animals (Basel) Article SIMPLE SUMMARY: The permeability of the plasma membrane to water and cryoprotectants is a critical factor in the effective vitrification of oocytes. The goal of this study is to better understand the pathways used to transport water and other cryoprotectants through the plasma membrane of bovine in vitro matured oocytes, with a focus on the role of aquaporin 7 (AQP7). We demonstrated that cryoprotectants stimulated AQP3 and AQP7 but not AQP9 expression in mature bovine oocytes. Dimethyl sulfoxide upregulates AQP3 expression, while ethylene glycol upregulates AQP7 expression in oocytes in a CPA-dependent fashion. We also demonstrated that exogenous expression of aquaglyceroporins such as AQP7 is possible in in vitro matured oocytes. When permeability values for membrane transport of dimethyl sulfoxide, ethylene glycol and sucrose were assessed, we observed that AQP7 overexpressed oocytes are more permeable to water in the presence of dimethyl sulfoxide solution. These biophysical characteristics, together with the use of membrane transport modeling, will allow re-evaluation and possibly improvement of previously described protocols for bovine oocyte cryopreservation. ABSTRACT: Aquaglyceroporins are known as channel proteins, and are able to transport water and small neutral solutes. In this study, we evaluate the effect of exposure of in vitro matured bovine oocytes to hyperosmotic solutions containing ethylene glycol (EG), dimethyl sulfoxide (Me(2)SO) or sucrose on the expression levels of AQP3, AQP7 and AQP9. Moreover, we studied whether artificial protein expression of AQP7 in bovine oocytes increases their permeability to water and cryoprotectants. Exposure to hyperosmotic solutions stimulated AQP3 and AQP7 but not AQP9 expression. Oocytes exposed to hyperosmotic Me(2)SO solution exhibited upregulated AQP3 expression, while AQP7 expression was upregulated by EG hyperosmotic exposure. Microinjection of oocytes at the germinal vesicle stage with enhanced green fluorescent protein (EGFP) or EGFP+AQP7 cRNAs resulted in the expression of the corresponding proteins in ≈86% of the metaphase-II stage oocytes. AQP7 facilitated water diffusion when bovine MII oocytes were in presence of Me(2)SO solution but not EG or sucrose solution. However, the overexpression of this aquaporin did not increase membrane permeability to Me(2)SO or EG. In summary, cryoprotectant-induced increase of AQP3 and AQP7 expression could be one of the mechanisms underlying oocyte tolerance to hyperosmotic stress. Water diffusion appears to be improved when AQP7 overexpressed oocytes are exposed to Me(2)SO, shortening the time required for oocytes to achieve osmotic balance with cryoprotectant solutions. MDPI 2022-02-21 /pmc/articles/PMC8868131/ /pubmed/35203238 http://dx.doi.org/10.3390/ani12040530 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
García-Martínez, Tania
Martínez-Rodero, Iris
Roncero-Carol, Joan
Vendrell-Flotats, Meritxell
Gardela, Jaume
Gutiérrez-Adán, Alfonso
Ramos-Ibeas, Priscila
Higgins, Adam Z.
Mogas, Teresa
The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes
title The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes
title_full The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes
title_fullStr The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes
title_full_unstemmed The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes
title_short The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes
title_sort role of aquaporin 7 in the movement of water and cryoprotectants in bovine in vitro matured oocytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868131/
https://www.ncbi.nlm.nih.gov/pubmed/35203238
http://dx.doi.org/10.3390/ani12040530
work_keys_str_mv AT garciamartineztania theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT martinezroderoiris theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT roncerocaroljoan theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT vendrellflotatsmeritxell theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT gardelajaume theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT gutierrezadanalfonso theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT ramosibeaspriscila theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT higginsadamz theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT mogasteresa theroleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT garciamartineztania roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT martinezroderoiris roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT roncerocaroljoan roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT vendrellflotatsmeritxell roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT gardelajaume roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT gutierrezadanalfonso roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT ramosibeaspriscila roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT higginsadamz roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes
AT mogasteresa roleofaquaporin7inthemovementofwaterandcryoprotectantsinbovineinvitromaturedoocytes