Cargando…

Estimation of the Maternal Investment of Sea Turtles by Automatic Identification of Nesting Behavior and Number of Eggs Laid from a Tri-Axial Accelerometer

SIMPLE SUMMARY: During the reproduction period, female sea turtles come several times onto the beaches to lay their eggs. Monitoring of the nesting populations is therefore important to estimate the state of a population and its future. However, measuring the clutch size and frequency of sea turtles...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeantet, Lorène, Hadetskyi, Vadym, Vigon, Vincent, Korysko, François, Paranthoen, Nicolas, Chevallier, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868198/
https://www.ncbi.nlm.nih.gov/pubmed/35203228
http://dx.doi.org/10.3390/ani12040520
Descripción
Sumario:SIMPLE SUMMARY: During the reproduction period, female sea turtles come several times onto the beaches to lay their eggs. Monitoring of the nesting populations is therefore important to estimate the state of a population and its future. However, measuring the clutch size and frequency of sea turtles is tedious work that requires rigorous monitoring of the nesting site throughout the breeding season. In order to support the fieldwork, we propose an automatic method to remotely record the behavior on land of the sea turtles from animal-attached sensors; an accelerometer. The proposed method estimates, with an accuracy of 95%, the behaviors on land of sea turtles and the number of eggs laid. This automatic method should therefore help researchers monitor nesting sea turtle populations and contribute to improving global knowledge on the demographic status of these threatened species. ABSTRACT: Monitoring reproductive outputs of sea turtles is difficult, as it requires a large number of observers patrolling extended beaches every night throughout the breeding season with the risk of missing nesting individuals. We introduce the first automatic method to remotely record the reproductive outputs of green turtles (Chelonia mydas) using accelerometers. First, we trained a fully convolutional neural network, the V-net, to automatically identify the six behaviors shown during nesting. With an accuracy of 0.95, the V-net succeeded in detecting the Egg laying process with a precision of 0.97. Then, we estimated the number of laid eggs from the predicted Egg laying sequence and obtained the outputs with a mean relative error of 7% compared to the observed numbers in the field. Based on deployment of non-invasive and miniature loggers, the proposed method should help researchers monitor nesting sea turtle populations. Furthermore, its use can be coupled with the deployment of accelerometers at sea during the intra-nesting period, from which behaviors can also be estimated. The knowledge of the behavior of sea turtle on land and at sea during the entire reproduction period is essential to improve our knowledge of this threatened species.