Cargando…
Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment
Periodontal disease (PD) is complex polymicrobial disease which destroys tooth-supporting tissue. Although various synthetic inhibitors of periodontitis-triggering pathogens have been recognized, their undesirable side effects limit their application. Hence, the present study intended to perform the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868241/ https://www.ncbi.nlm.nih.gov/pubmed/35203811 http://dx.doi.org/10.3390/antibiotics11020207 |
_version_ | 1784656219824193536 |
---|---|
author | Sa’ad, Mohammad Auwal Kavitha, Ramasamy Fuloria, Shivkanya Fuloria, Neeraj Kumar Ravichandran, Manickam Lalitha, Pattabhiraman |
author_facet | Sa’ad, Mohammad Auwal Kavitha, Ramasamy Fuloria, Shivkanya Fuloria, Neeraj Kumar Ravichandran, Manickam Lalitha, Pattabhiraman |
author_sort | Sa’ad, Mohammad Auwal |
collection | PubMed |
description | Periodontal disease (PD) is complex polymicrobial disease which destroys tooth-supporting tissue. Although various synthetic inhibitors of periodontitis-triggering pathogens have been recognized, their undesirable side effects limit their application. Hence, the present study intended to perform the synthesis, characterization, antimicrobial evaluation, and cytotoxicity analysis of novel benzamidine analogues (NBA). This study involved the synthesis of novel imino bases of benzamidine (4a–c), by reacting different aromatic aldehydes with 2-(4-carbamimidoylphenoxy) acetohydrazide (3), which was synthesized by the hydrazination of ethyl 2-(4-carbamimidoylphenoxy) acetate (2), the derivative of 4-hydroxybenzene carboximidamide (1). This was followed by characterization using FTIR, (1)H, (13)C NMR and mass spectrometry. All synthesized compounds were further tested for antimicrobial potential against PD-triggering pathogens by the micro broth dilution method. The cytotoxicity analysis of the NBA against HEK 293 cells was conducted using an MTT assay. The present study resulted in a successful synthesis of NBA and elucidated their structures. The synthesized NBA exhibited significant antimicrobial activity values between 31.25 and 125 µg/mL against tested pathogens. All NBA exhibited weak cytotoxicity against HEK 293 cells at 7.81 µg, equally to chlorhexidine at 0.2%. The significant antimicrobial activity of NBA against PD-triggering pathogens supports their potential application in periodontitis treatment. |
format | Online Article Text |
id | pubmed-8868241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88682412022-02-25 Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment Sa’ad, Mohammad Auwal Kavitha, Ramasamy Fuloria, Shivkanya Fuloria, Neeraj Kumar Ravichandran, Manickam Lalitha, Pattabhiraman Antibiotics (Basel) Article Periodontal disease (PD) is complex polymicrobial disease which destroys tooth-supporting tissue. Although various synthetic inhibitors of periodontitis-triggering pathogens have been recognized, their undesirable side effects limit their application. Hence, the present study intended to perform the synthesis, characterization, antimicrobial evaluation, and cytotoxicity analysis of novel benzamidine analogues (NBA). This study involved the synthesis of novel imino bases of benzamidine (4a–c), by reacting different aromatic aldehydes with 2-(4-carbamimidoylphenoxy) acetohydrazide (3), which was synthesized by the hydrazination of ethyl 2-(4-carbamimidoylphenoxy) acetate (2), the derivative of 4-hydroxybenzene carboximidamide (1). This was followed by characterization using FTIR, (1)H, (13)C NMR and mass spectrometry. All synthesized compounds were further tested for antimicrobial potential against PD-triggering pathogens by the micro broth dilution method. The cytotoxicity analysis of the NBA against HEK 293 cells was conducted using an MTT assay. The present study resulted in a successful synthesis of NBA and elucidated their structures. The synthesized NBA exhibited significant antimicrobial activity values between 31.25 and 125 µg/mL against tested pathogens. All NBA exhibited weak cytotoxicity against HEK 293 cells at 7.81 µg, equally to chlorhexidine at 0.2%. The significant antimicrobial activity of NBA against PD-triggering pathogens supports their potential application in periodontitis treatment. MDPI 2022-02-07 /pmc/articles/PMC8868241/ /pubmed/35203811 http://dx.doi.org/10.3390/antibiotics11020207 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sa’ad, Mohammad Auwal Kavitha, Ramasamy Fuloria, Shivkanya Fuloria, Neeraj Kumar Ravichandran, Manickam Lalitha, Pattabhiraman Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment |
title | Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment |
title_full | Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment |
title_fullStr | Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment |
title_full_unstemmed | Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment |
title_short | Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment |
title_sort | synthesis, characterization and biological evaluation of novel benzamidine derivatives: newer antibiotics for periodontitis treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868241/ https://www.ncbi.nlm.nih.gov/pubmed/35203811 http://dx.doi.org/10.3390/antibiotics11020207 |
work_keys_str_mv | AT saadmohammadauwal synthesischaracterizationandbiologicalevaluationofnovelbenzamidinederivativesnewerantibioticsforperiodontitistreatment AT kavitharamasamy synthesischaracterizationandbiologicalevaluationofnovelbenzamidinederivativesnewerantibioticsforperiodontitistreatment AT fuloriashivkanya synthesischaracterizationandbiologicalevaluationofnovelbenzamidinederivativesnewerantibioticsforperiodontitistreatment AT fulorianeerajkumar synthesischaracterizationandbiologicalevaluationofnovelbenzamidinederivativesnewerantibioticsforperiodontitistreatment AT ravichandranmanickam synthesischaracterizationandbiologicalevaluationofnovelbenzamidinederivativesnewerantibioticsforperiodontitistreatment AT lalithapattabhiraman synthesischaracterizationandbiologicalevaluationofnovelbenzamidinederivativesnewerantibioticsforperiodontitistreatment |