Cargando…

Triplet-Energy Quenching Functions of Antioxidant Molecules

UV-like DNA damage is created in the dark by chemiexcitation, in which UV-activated enzymes generate reactive oxygen and nitrogen species that create a dioxetane on melanin. Thermal cleavage creates an electronically excited triplet-state carbonyl whose high energy transfers to DNA. Screening natura...

Descripción completa

Detalles Bibliográficos
Autores principales: Angelé-Martínez, Carlos, Goncalves, Leticia Christina Pires, Premi, Sanjay, Augusto, Felipe A., Palmatier, Meg A., Amar, Saroj K., Brash, Douglas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868474/
https://www.ncbi.nlm.nih.gov/pubmed/35204239
http://dx.doi.org/10.3390/antiox11020357
_version_ 1784656278694395904
author Angelé-Martínez, Carlos
Goncalves, Leticia Christina Pires
Premi, Sanjay
Augusto, Felipe A.
Palmatier, Meg A.
Amar, Saroj K.
Brash, Douglas E.
author_facet Angelé-Martínez, Carlos
Goncalves, Leticia Christina Pires
Premi, Sanjay
Augusto, Felipe A.
Palmatier, Meg A.
Amar, Saroj K.
Brash, Douglas E.
author_sort Angelé-Martínez, Carlos
collection PubMed
description UV-like DNA damage is created in the dark by chemiexcitation, in which UV-activated enzymes generate reactive oxygen and nitrogen species that create a dioxetane on melanin. Thermal cleavage creates an electronically excited triplet-state carbonyl whose high energy transfers to DNA. Screening natural compounds for the ability to quench this energy identified polyenes, polyphenols, mycosporine-like amino acids, and related compounds better known as antioxidants. To eliminate false positives such as ROS and RNS scavengers, we then used the generator of triplet-state acetone, tetramethyl-1,2-dioxetane (TMD), to excite the triplet-energy reporter 9,10-dibromoanthracene-2-sulfonate (DBAS). Quenching measured as reduction in DBAS luminescence revealed three clusters of 50% inhibitory concentration, ~50 μM, 200–500 μM, and >600 μM, with the former including sorbate, ferulic acid, and resveratrol. Representative triplet-state quenchers prevented chemiexcitation-induced “dark” cyclobutane pyrimidine dimers (dCPD) in DNA and in UVA-irradiated melanocytes. We conclude that (i) the delocalized pi electron cloud that stabilizes the electron-donating activity of many common antioxidants allows the same molecule to prevent an electronically excited species from transferring its triplet-state energy to targets such as DNA and (ii) the most effective class of triplet-state quenchers appear to operate by energy diversion instead of electron donation and dissipate that energy by isomerization.
format Online
Article
Text
id pubmed-8868474
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88684742022-02-25 Triplet-Energy Quenching Functions of Antioxidant Molecules Angelé-Martínez, Carlos Goncalves, Leticia Christina Pires Premi, Sanjay Augusto, Felipe A. Palmatier, Meg A. Amar, Saroj K. Brash, Douglas E. Antioxidants (Basel) Article UV-like DNA damage is created in the dark by chemiexcitation, in which UV-activated enzymes generate reactive oxygen and nitrogen species that create a dioxetane on melanin. Thermal cleavage creates an electronically excited triplet-state carbonyl whose high energy transfers to DNA. Screening natural compounds for the ability to quench this energy identified polyenes, polyphenols, mycosporine-like amino acids, and related compounds better known as antioxidants. To eliminate false positives such as ROS and RNS scavengers, we then used the generator of triplet-state acetone, tetramethyl-1,2-dioxetane (TMD), to excite the triplet-energy reporter 9,10-dibromoanthracene-2-sulfonate (DBAS). Quenching measured as reduction in DBAS luminescence revealed three clusters of 50% inhibitory concentration, ~50 μM, 200–500 μM, and >600 μM, with the former including sorbate, ferulic acid, and resveratrol. Representative triplet-state quenchers prevented chemiexcitation-induced “dark” cyclobutane pyrimidine dimers (dCPD) in DNA and in UVA-irradiated melanocytes. We conclude that (i) the delocalized pi electron cloud that stabilizes the electron-donating activity of many common antioxidants allows the same molecule to prevent an electronically excited species from transferring its triplet-state energy to targets such as DNA and (ii) the most effective class of triplet-state quenchers appear to operate by energy diversion instead of electron donation and dissipate that energy by isomerization. MDPI 2022-02-11 /pmc/articles/PMC8868474/ /pubmed/35204239 http://dx.doi.org/10.3390/antiox11020357 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Angelé-Martínez, Carlos
Goncalves, Leticia Christina Pires
Premi, Sanjay
Augusto, Felipe A.
Palmatier, Meg A.
Amar, Saroj K.
Brash, Douglas E.
Triplet-Energy Quenching Functions of Antioxidant Molecules
title Triplet-Energy Quenching Functions of Antioxidant Molecules
title_full Triplet-Energy Quenching Functions of Antioxidant Molecules
title_fullStr Triplet-Energy Quenching Functions of Antioxidant Molecules
title_full_unstemmed Triplet-Energy Quenching Functions of Antioxidant Molecules
title_short Triplet-Energy Quenching Functions of Antioxidant Molecules
title_sort triplet-energy quenching functions of antioxidant molecules
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868474/
https://www.ncbi.nlm.nih.gov/pubmed/35204239
http://dx.doi.org/10.3390/antiox11020357
work_keys_str_mv AT angelemartinezcarlos tripletenergyquenchingfunctionsofantioxidantmolecules
AT goncalvesleticiachristinapires tripletenergyquenchingfunctionsofantioxidantmolecules
AT premisanjay tripletenergyquenchingfunctionsofantioxidantmolecules
AT augustofelipea tripletenergyquenchingfunctionsofantioxidantmolecules
AT palmatiermega tripletenergyquenchingfunctionsofantioxidantmolecules
AT amarsarojk tripletenergyquenchingfunctionsofantioxidantmolecules
AT brashdouglase tripletenergyquenchingfunctionsofantioxidantmolecules