Cargando…

Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia

SIMPLE SUMMARY: Despite its high organic matter content, sewage sludge contains significant quantities of heavy metals, including those designated as hazardous, such as cadmium, nickel, chromium, mercury, copper, lead, and zinc, which, as a consequence, have a negative impact on living organisms. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Alsherif, Emad A., Al-Shaikh, Turki M., AbdElgawad, Hamada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869145/
https://www.ncbi.nlm.nih.gov/pubmed/35205031
http://dx.doi.org/10.3390/biology11020164
_version_ 1784656426661052416
author Alsherif, Emad A.
Al-Shaikh, Turki M.
AbdElgawad, Hamada
author_facet Alsherif, Emad A.
Al-Shaikh, Turki M.
AbdElgawad, Hamada
author_sort Alsherif, Emad A.
collection PubMed
description SIMPLE SUMMARY: Despite its high organic matter content, sewage sludge contains significant quantities of heavy metals, including those designated as hazardous, such as cadmium, nickel, chromium, mercury, copper, lead, and zinc, which, as a consequence, have a negative impact on living organisms. The current research sought to study the effect of dumping sludge, as one of the sources of pollution with heavy metals, on biodiversity and to assess the bioremediation and stress defense strategies of a tolerant plant species. The obtained results showed that soil pollution by heavy metals has a substantial influence on plant diversity. The selected species, Amaranthus retroflexus L., showed a high biological concentration factor (BCF) and low translocation factor (TF) for Cu, As and Ni. The stress defense strategies of A. retroflexus grown under complex heavy metals contamination are studied and discussed. ABSTRACT: Accumulation of heavy metals in soil is becoming an increasingly serious eco-environmental problem. Thus, investigating how plants mitigate heavy metal toxicity is necessary to reduce the associated risks. Here, we aimed to assess the bioremediation and stress defense strategies of tolerant plant species grown under complex heavy metals contamination. To this end, a field study was conducted on the vegetation cover of sites with different soil pollution levels. Forty-two plant species that belong to 38 genera and 21 families were identified. The pollution had a significant impact on plant richness in the polluted sites. Out of several screened plants, Amaranthus retroflexus L. was selected because of its high relative density (16.7) and a high frequency (100%) in the most polluted sites. The selected species showed a high biological concentration factor (BCF) and low translocation factor (TF) for Cu, As and Ni. To control the heavy metal-induced oxidative damage, A. retroflexus invested in detoxification (metallothionein and phytochelatins, glutathione and glutathione-S-transferase (GST). At the organ level, oxidase damage (H(2)O(2), lipid and protein peroxidation) was observed, particularly in the roots. To mitigate heavy metal oxidative stress, antioxidant mechanisms (e.g., tocopherols, glutathione, peroxidases, catalase, peroxide dismutase and ASC-GSH cycle) were upregulated, mainly in the roots. Overall, our results suggested the potentiality of A. retroflexus as a promising bioremediatory and stress-tolerant plant at the same time; moreover, defense and detoxification mechanisms were uncovered.
format Online
Article
Text
id pubmed-8869145
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88691452022-02-25 Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia Alsherif, Emad A. Al-Shaikh, Turki M. AbdElgawad, Hamada Biology (Basel) Article SIMPLE SUMMARY: Despite its high organic matter content, sewage sludge contains significant quantities of heavy metals, including those designated as hazardous, such as cadmium, nickel, chromium, mercury, copper, lead, and zinc, which, as a consequence, have a negative impact on living organisms. The current research sought to study the effect of dumping sludge, as one of the sources of pollution with heavy metals, on biodiversity and to assess the bioremediation and stress defense strategies of a tolerant plant species. The obtained results showed that soil pollution by heavy metals has a substantial influence on plant diversity. The selected species, Amaranthus retroflexus L., showed a high biological concentration factor (BCF) and low translocation factor (TF) for Cu, As and Ni. The stress defense strategies of A. retroflexus grown under complex heavy metals contamination are studied and discussed. ABSTRACT: Accumulation of heavy metals in soil is becoming an increasingly serious eco-environmental problem. Thus, investigating how plants mitigate heavy metal toxicity is necessary to reduce the associated risks. Here, we aimed to assess the bioremediation and stress defense strategies of tolerant plant species grown under complex heavy metals contamination. To this end, a field study was conducted on the vegetation cover of sites with different soil pollution levels. Forty-two plant species that belong to 38 genera and 21 families were identified. The pollution had a significant impact on plant richness in the polluted sites. Out of several screened plants, Amaranthus retroflexus L. was selected because of its high relative density (16.7) and a high frequency (100%) in the most polluted sites. The selected species showed a high biological concentration factor (BCF) and low translocation factor (TF) for Cu, As and Ni. To control the heavy metal-induced oxidative damage, A. retroflexus invested in detoxification (metallothionein and phytochelatins, glutathione and glutathione-S-transferase (GST). At the organ level, oxidase damage (H(2)O(2), lipid and protein peroxidation) was observed, particularly in the roots. To mitigate heavy metal oxidative stress, antioxidant mechanisms (e.g., tocopherols, glutathione, peroxidases, catalase, peroxide dismutase and ASC-GSH cycle) were upregulated, mainly in the roots. Overall, our results suggested the potentiality of A. retroflexus as a promising bioremediatory and stress-tolerant plant at the same time; moreover, defense and detoxification mechanisms were uncovered. MDPI 2022-01-20 /pmc/articles/PMC8869145/ /pubmed/35205031 http://dx.doi.org/10.3390/biology11020164 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alsherif, Emad A.
Al-Shaikh, Turki M.
AbdElgawad, Hamada
Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia
title Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia
title_full Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia
title_fullStr Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia
title_full_unstemmed Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia
title_short Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia
title_sort heavy metal effects on biodiversity and stress responses of plants inhabiting contaminated soil in khulais, saudi arabia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869145/
https://www.ncbi.nlm.nih.gov/pubmed/35205031
http://dx.doi.org/10.3390/biology11020164
work_keys_str_mv AT alsherifemada heavymetaleffectsonbiodiversityandstressresponsesofplantsinhabitingcontaminatedsoilinkhulaissaudiarabia
AT alshaikhturkim heavymetaleffectsonbiodiversityandstressresponsesofplantsinhabitingcontaminatedsoilinkhulaissaudiarabia
AT abdelgawadhamada heavymetaleffectsonbiodiversityandstressresponsesofplantsinhabitingcontaminatedsoilinkhulaissaudiarabia