Cargando…
Synthesis of Microscopic Cell Images Obtained from Bone Marrow Aspirate Smears through Generative Adversarial Networks
SIMPLE SUMMARY: This paper proposes a hybrid generative adversarial networks model—WGAN-GP-AC—to generate synthetic microscopic cell images. We generate the synthetic data for the cell types containing fewer data to obtain a balanced dataset. A balanced dataset would help enhance the classification...
Autores principales: | Hazra, Debapriya, Byun, Yung-Cheol, Kim, Woo Jin, Kang, Chul-Ung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869175/ https://www.ncbi.nlm.nih.gov/pubmed/35205142 http://dx.doi.org/10.3390/biology11020276 |
Ejemplares similares
-
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
por: Hazra, Debapriya, et al.
Publicado: (2020) -
Generative Adversarial Networks for Creating Synthetic Nucleic Acid Sequences of Cat Genome
por: Hazra, Debapriya, et al.
Publicado: (2022) -
Lymphoglandular bodies in bone marrow aspirate smears
por: Jain, Swachi, et al.
Publicado: (2017) -
Extensive amyloid deposits in bone marrow aspirate smears
por: Li, Ting Hon Stanford, et al.
Publicado: (2020) -
Leishmaniasis: Bone Marrow Aspirate Smear and Rapid Antibody Test
por: Joob, Beuy, et al.
Publicado: (2017)