Cargando…

Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss

SIMPLE SUMMARY: Alternative splicing (AS) is a key post-transcriptional regulatory mechanism that acts an important regulator in response to environmental stimuli in organisms. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of AS in response to different s...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Yuan, Gao, Qinfeng, Dong, Shuanglin, Zhou, Yangen, Yu, Han, Liu, Dazhi, Yang, Wenzhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869236/
https://www.ncbi.nlm.nih.gov/pubmed/35205090
http://dx.doi.org/10.3390/biology11020222
_version_ 1784656449124696064
author Tian, Yuan
Gao, Qinfeng
Dong, Shuanglin
Zhou, Yangen
Yu, Han
Liu, Dazhi
Yang, Wenzhao
author_facet Tian, Yuan
Gao, Qinfeng
Dong, Shuanglin
Zhou, Yangen
Yu, Han
Liu, Dazhi
Yang, Wenzhao
author_sort Tian, Yuan
collection PubMed
description SIMPLE SUMMARY: Alternative splicing (AS) is a key post-transcriptional regulatory mechanism that acts an important regulator in response to environmental stimuli in organisms. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of AS in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). The results indicated that different salinity environments changed the splicing patterns of numerous RNA splicing regulators, which might affect the splicing decisions of many downstream target genes in response to salinity changes. This study provides preliminary evidence for the important roles of AS events in salinity adaptation in teleosts. ABSTRACT: Salinity is an important environmental factor that directly affects the survival of aquatic organisms, including fish. However, the underlying molecular mechanism of salinity adaptation at post-transcriptional regulation levels is still poorly understood in fish. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of alternative splicing (AS) in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). A total of 10,826, 10,741 and 10,112 AS events were identified in the livers of the three species. The characteristics of these AS events were systematically investigated. Furthermore, a total of 940, 590 and 553 differentially alternative splicing (DAS) events were determined and characterized in the livers of turbot, tongue sole and steelhead trout, respectively, between low- and high-salinity environments. Functional enrichment analysis indicated that these DAS genes in the livers of three species were commonly enriched in some GO terms and KEGG pathways associated with RNA processing. The most common DAS genes work as RNA-binding proteins and play crucial roles in the regulation of RNA splicing. The study provides new insights into uncovering the molecular mechanisms of salinity adaptation in teleosts.
format Online
Article
Text
id pubmed-8869236
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88692362022-02-25 Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss Tian, Yuan Gao, Qinfeng Dong, Shuanglin Zhou, Yangen Yu, Han Liu, Dazhi Yang, Wenzhao Biology (Basel) Article SIMPLE SUMMARY: Alternative splicing (AS) is a key post-transcriptional regulatory mechanism that acts an important regulator in response to environmental stimuli in organisms. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of AS in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). The results indicated that different salinity environments changed the splicing patterns of numerous RNA splicing regulators, which might affect the splicing decisions of many downstream target genes in response to salinity changes. This study provides preliminary evidence for the important roles of AS events in salinity adaptation in teleosts. ABSTRACT: Salinity is an important environmental factor that directly affects the survival of aquatic organisms, including fish. However, the underlying molecular mechanism of salinity adaptation at post-transcriptional regulation levels is still poorly understood in fish. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of alternative splicing (AS) in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). A total of 10,826, 10,741 and 10,112 AS events were identified in the livers of the three species. The characteristics of these AS events were systematically investigated. Furthermore, a total of 940, 590 and 553 differentially alternative splicing (DAS) events were determined and characterized in the livers of turbot, tongue sole and steelhead trout, respectively, between low- and high-salinity environments. Functional enrichment analysis indicated that these DAS genes in the livers of three species were commonly enriched in some GO terms and KEGG pathways associated with RNA processing. The most common DAS genes work as RNA-binding proteins and play crucial roles in the regulation of RNA splicing. The study provides new insights into uncovering the molecular mechanisms of salinity adaptation in teleosts. MDPI 2022-01-30 /pmc/articles/PMC8869236/ /pubmed/35205090 http://dx.doi.org/10.3390/biology11020222 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tian, Yuan
Gao, Qinfeng
Dong, Shuanglin
Zhou, Yangen
Yu, Han
Liu, Dazhi
Yang, Wenzhao
Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss
title Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss
title_full Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss
title_fullStr Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss
title_full_unstemmed Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss
title_short Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss
title_sort genome-wide analysis of alternative splicing (as) mechanism provides insights into salinity adaptation in the livers of three euryhaline teleosts, including scophthalmus maximus, cynoglossus semilaevis and oncorhynchus mykiss
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869236/
https://www.ncbi.nlm.nih.gov/pubmed/35205090
http://dx.doi.org/10.3390/biology11020222
work_keys_str_mv AT tianyuan genomewideanalysisofalternativesplicingasmechanismprovidesinsightsintosalinityadaptationintheliversofthreeeuryhalineteleostsincludingscophthalmusmaximuscynoglossussemilaevisandoncorhynchusmykiss
AT gaoqinfeng genomewideanalysisofalternativesplicingasmechanismprovidesinsightsintosalinityadaptationintheliversofthreeeuryhalineteleostsincludingscophthalmusmaximuscynoglossussemilaevisandoncorhynchusmykiss
AT dongshuanglin genomewideanalysisofalternativesplicingasmechanismprovidesinsightsintosalinityadaptationintheliversofthreeeuryhalineteleostsincludingscophthalmusmaximuscynoglossussemilaevisandoncorhynchusmykiss
AT zhouyangen genomewideanalysisofalternativesplicingasmechanismprovidesinsightsintosalinityadaptationintheliversofthreeeuryhalineteleostsincludingscophthalmusmaximuscynoglossussemilaevisandoncorhynchusmykiss
AT yuhan genomewideanalysisofalternativesplicingasmechanismprovidesinsightsintosalinityadaptationintheliversofthreeeuryhalineteleostsincludingscophthalmusmaximuscynoglossussemilaevisandoncorhynchusmykiss
AT liudazhi genomewideanalysisofalternativesplicingasmechanismprovidesinsightsintosalinityadaptationintheliversofthreeeuryhalineteleostsincludingscophthalmusmaximuscynoglossussemilaevisandoncorhynchusmykiss
AT yangwenzhao genomewideanalysisofalternativesplicingasmechanismprovidesinsightsintosalinityadaptationintheliversofthreeeuryhalineteleostsincludingscophthalmusmaximuscynoglossussemilaevisandoncorhynchusmykiss