Cargando…
Automated Cell Foreground–Background Segmentation with Phase-Contrast Microscopy Images: An Alternative to Machine Learning Segmentation Methods with Small-Scale Data
Cell segmentation is a critical step for image-based experimental analysis. Existing cell segmentation methods are neither entirely automated nor perform well under basic laboratory microscopy. This study proposes an efficient and automated cell segmentation method involving morphological operations...
Autores principales: | Ye, Guochang, Kaya, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869246/ https://www.ncbi.nlm.nih.gov/pubmed/35200434 http://dx.doi.org/10.3390/bioengineering9020081 |
Ejemplares similares
-
Robust Pan/Tilt Compensation for Foreground–Background Segmentation
por: Allebosch, Gianni, et al.
Publicado: (2019) -
Foreground-Background Segmentation Revealed during Natural Image Viewing
por: Papale, Paolo, et al.
Publicado: (2018) -
Foreground Detection Based on Superpixel and Semantic Segmentation
por: Feng, Junying, et al.
Publicado: (2022) -
Foreground Segmentation-Based Density Grading Networks for Crowd Counting
por: Liu, Zelong, et al.
Publicado: (2023) -
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds
por: Park, Gilsoon, et al.
Publicado: (2021)