Cargando…
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
SIMPLE SUMMARY: Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869254/ https://www.ncbi.nlm.nih.gov/pubmed/35205164 http://dx.doi.org/10.3390/biology11020297 |
_version_ | 1784656453583241216 |
---|---|
author | Geißert, Janina K. Bohn, Erwin Mostolizadeh, Reihaneh Dräger, Andreas Autenrieth, Ingo B. Beier, Sina Deusch, Oliver Renz, Alina Eichner, Martin Schütz, Monika S. |
author_facet | Geißert, Janina K. Bohn, Erwin Mostolizadeh, Reihaneh Dräger, Andreas Autenrieth, Ingo B. Beier, Sina Deusch, Oliver Renz, Alina Eichner, Martin Schütz, Monika S. |
author_sort | Geißert, Janina K. |
collection | PubMed |
description | SIMPLE SUMMARY: Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. ABSTRACT: The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001. |
format | Online Article Text |
id | pubmed-8869254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88692542022-02-25 A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice Geißert, Janina K. Bohn, Erwin Mostolizadeh, Reihaneh Dräger, Andreas Autenrieth, Ingo B. Beier, Sina Deusch, Oliver Renz, Alina Eichner, Martin Schütz, Monika S. Biology (Basel) Article SIMPLE SUMMARY: Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. ABSTRACT: The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001. MDPI 2022-02-12 /pmc/articles/PMC8869254/ /pubmed/35205164 http://dx.doi.org/10.3390/biology11020297 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Geißert, Janina K. Bohn, Erwin Mostolizadeh, Reihaneh Dräger, Andreas Autenrieth, Ingo B. Beier, Sina Deusch, Oliver Renz, Alina Eichner, Martin Schütz, Monika S. A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice |
title | A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice |
title_full | A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice |
title_fullStr | A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice |
title_full_unstemmed | A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice |
title_short | A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice |
title_sort | computational model of bacterial population dynamics in gastrointestinal yersinia enterocolitica infections in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869254/ https://www.ncbi.nlm.nih.gov/pubmed/35205164 http://dx.doi.org/10.3390/biology11020297 |
work_keys_str_mv | AT geißertjaninak acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT bohnerwin acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT mostolizadehreihaneh acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT dragerandreas acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT autenriethingob acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT beiersina acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT deuscholiver acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT renzalina acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT eichnermartin acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT schutzmonikas acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT geißertjaninak computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT bohnerwin computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT mostolizadehreihaneh computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT dragerandreas computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT autenriethingob computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT beiersina computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT deuscholiver computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT renzalina computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT eichnermartin computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice AT schutzmonikas computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice |