Cargando…

A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice

SIMPLE SUMMARY: Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of...

Descripción completa

Detalles Bibliográficos
Autores principales: Geißert, Janina K., Bohn, Erwin, Mostolizadeh, Reihaneh, Dräger, Andreas, Autenrieth, Ingo B., Beier, Sina, Deusch, Oliver, Renz, Alina, Eichner, Martin, Schütz, Monika S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869254/
https://www.ncbi.nlm.nih.gov/pubmed/35205164
http://dx.doi.org/10.3390/biology11020297
_version_ 1784656453583241216
author Geißert, Janina K.
Bohn, Erwin
Mostolizadeh, Reihaneh
Dräger, Andreas
Autenrieth, Ingo B.
Beier, Sina
Deusch, Oliver
Renz, Alina
Eichner, Martin
Schütz, Monika S.
author_facet Geißert, Janina K.
Bohn, Erwin
Mostolizadeh, Reihaneh
Dräger, Andreas
Autenrieth, Ingo B.
Beier, Sina
Deusch, Oliver
Renz, Alina
Eichner, Martin
Schütz, Monika S.
author_sort Geißert, Janina K.
collection PubMed
description SIMPLE SUMMARY: Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. ABSTRACT: The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
format Online
Article
Text
id pubmed-8869254
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88692542022-02-25 A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice Geißert, Janina K. Bohn, Erwin Mostolizadeh, Reihaneh Dräger, Andreas Autenrieth, Ingo B. Beier, Sina Deusch, Oliver Renz, Alina Eichner, Martin Schütz, Monika S. Biology (Basel) Article SIMPLE SUMMARY: Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. ABSTRACT: The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001. MDPI 2022-02-12 /pmc/articles/PMC8869254/ /pubmed/35205164 http://dx.doi.org/10.3390/biology11020297 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Geißert, Janina K.
Bohn, Erwin
Mostolizadeh, Reihaneh
Dräger, Andreas
Autenrieth, Ingo B.
Beier, Sina
Deusch, Oliver
Renz, Alina
Eichner, Martin
Schütz, Monika S.
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
title A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
title_full A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
title_fullStr A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
title_full_unstemmed A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
title_short A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice
title_sort computational model of bacterial population dynamics in gastrointestinal yersinia enterocolitica infections in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869254/
https://www.ncbi.nlm.nih.gov/pubmed/35205164
http://dx.doi.org/10.3390/biology11020297
work_keys_str_mv AT geißertjaninak acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT bohnerwin acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT mostolizadehreihaneh acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT dragerandreas acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT autenriethingob acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT beiersina acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT deuscholiver acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT renzalina acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT eichnermartin acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT schutzmonikas acomputationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT geißertjaninak computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT bohnerwin computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT mostolizadehreihaneh computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT dragerandreas computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT autenriethingob computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT beiersina computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT deuscholiver computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT renzalina computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT eichnermartin computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice
AT schutzmonikas computationalmodelofbacterialpopulationdynamicsingastrointestinalyersiniaenterocoliticainfectionsinmice