Cargando…
Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains
Many neurodegenerative disorders, including Alzheimer’s disease (AD), are strongly associated with the accumulation of oxidative damage. Transgenic animal models are commonly used to elucidate the pathogenic mechanism of AD. Beta amyloid (Aβ) and tau hyperphosphorylation are very famous hallmarks of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869326/ https://www.ncbi.nlm.nih.gov/pubmed/35203488 http://dx.doi.org/10.3390/biomedicines10020281 |
_version_ | 1784656471114383360 |
---|---|
author | Yoshida, Naoki Kato, Yugo Takatsu, Hirokatsu Fukui, Koji |
author_facet | Yoshida, Naoki Kato, Yugo Takatsu, Hirokatsu Fukui, Koji |
author_sort | Yoshida, Naoki |
collection | PubMed |
description | Many neurodegenerative disorders, including Alzheimer’s disease (AD), are strongly associated with the accumulation of oxidative damage. Transgenic animal models are commonly used to elucidate the pathogenic mechanism of AD. Beta amyloid (Aβ) and tau hyperphosphorylation are very famous hallmarks of AD and well-studied, but the relationship between mitochondrial dysfunction and the onset and progression of AD requires further elucidation. In this study we used transgenic mice (the strain name is 5xFAD) at three different ages (3, 6, and 20 months old) as an AD model. Cognitive impairment in AD mice occurred in an age-dependent manner. Aβ1-40 expression significantly increased in an age-dependent manner in all brain regions with or without AD, and Aβ1-42 expression in the hippocampus increased at a young age. In a Western blot analysis using isolated mitochondria from three brain regions (cerebral cortex, cerebellum, and hippocampus), NMNAT-3 expression in the hippocampi of aged AD mice was significantly lower than that of young AD mice. SOD-2 expression in the hippocampi of AD mice was lower than for the age-matched controls. However, 3-NT expression in the hippocampi of AD mice was higher than for the age-matched controls. NQO-1 expression in the cerebral cortex of AD mice was higher than for the age-matched controls at every age that we examined. However, hippocampal NQO-1 expression in 6-month-old AD mice was significantly lower than in 3-month-old AD mice. These results indicate that oxidative stress in the hippocampi of AD mice is high compared to other brain regions and may induce mitochondrial dysfunction via oxidative damage. Protection of mitochondria from oxidative damage may be important to maintain cognitive function. |
format | Online Article Text |
id | pubmed-8869326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88693262022-02-25 Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains Yoshida, Naoki Kato, Yugo Takatsu, Hirokatsu Fukui, Koji Biomedicines Article Many neurodegenerative disorders, including Alzheimer’s disease (AD), are strongly associated with the accumulation of oxidative damage. Transgenic animal models are commonly used to elucidate the pathogenic mechanism of AD. Beta amyloid (Aβ) and tau hyperphosphorylation are very famous hallmarks of AD and well-studied, but the relationship between mitochondrial dysfunction and the onset and progression of AD requires further elucidation. In this study we used transgenic mice (the strain name is 5xFAD) at three different ages (3, 6, and 20 months old) as an AD model. Cognitive impairment in AD mice occurred in an age-dependent manner. Aβ1-40 expression significantly increased in an age-dependent manner in all brain regions with or without AD, and Aβ1-42 expression in the hippocampus increased at a young age. In a Western blot analysis using isolated mitochondria from three brain regions (cerebral cortex, cerebellum, and hippocampus), NMNAT-3 expression in the hippocampi of aged AD mice was significantly lower than that of young AD mice. SOD-2 expression in the hippocampi of AD mice was lower than for the age-matched controls. However, 3-NT expression in the hippocampi of AD mice was higher than for the age-matched controls. NQO-1 expression in the cerebral cortex of AD mice was higher than for the age-matched controls at every age that we examined. However, hippocampal NQO-1 expression in 6-month-old AD mice was significantly lower than in 3-month-old AD mice. These results indicate that oxidative stress in the hippocampi of AD mice is high compared to other brain regions and may induce mitochondrial dysfunction via oxidative damage. Protection of mitochondria from oxidative damage may be important to maintain cognitive function. MDPI 2022-01-26 /pmc/articles/PMC8869326/ /pubmed/35203488 http://dx.doi.org/10.3390/biomedicines10020281 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yoshida, Naoki Kato, Yugo Takatsu, Hirokatsu Fukui, Koji Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains |
title | Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains |
title_full | Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains |
title_fullStr | Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains |
title_full_unstemmed | Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains |
title_short | Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer’s Disease Transgenic Mouse Brains |
title_sort | relationship between cognitive dysfunction and age-related variability in oxidative markers in isolated mitochondria of alzheimer’s disease transgenic mouse brains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869326/ https://www.ncbi.nlm.nih.gov/pubmed/35203488 http://dx.doi.org/10.3390/biomedicines10020281 |
work_keys_str_mv | AT yoshidanaoki relationshipbetweencognitivedysfunctionandagerelatedvariabilityinoxidativemarkersinisolatedmitochondriaofalzheimersdiseasetransgenicmousebrains AT katoyugo relationshipbetweencognitivedysfunctionandagerelatedvariabilityinoxidativemarkersinisolatedmitochondriaofalzheimersdiseasetransgenicmousebrains AT takatsuhirokatsu relationshipbetweencognitivedysfunctionandagerelatedvariabilityinoxidativemarkersinisolatedmitochondriaofalzheimersdiseasetransgenicmousebrains AT fukuikoji relationshipbetweencognitivedysfunctionandagerelatedvariabilityinoxidativemarkersinisolatedmitochondriaofalzheimersdiseasetransgenicmousebrains |