Cargando…
The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity
Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869476/ https://www.ncbi.nlm.nih.gov/pubmed/35204258 http://dx.doi.org/10.3390/antiox11020376 |
_version_ | 1784656506708295680 |
---|---|
author | Selyutina, Olga Yu. Kononova, Polina A. Koshman, Vladimir E. Fedenok, Lidiya G. Polyakov, Nikolay E. |
author_facet | Selyutina, Olga Yu. Kononova, Polina A. Koshman, Vladimir E. Fedenok, Lidiya G. Polyakov, Nikolay E. |
author_sort | Selyutina, Olga Yu. |
collection | PubMed |
description | Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence of ascorbic acid on lipid peroxidation in a model system that mimics the cell membrane, namely micelles of linoleic acid (LA), induced by chelate complexes of iron and copper ions with quinone-chelator 2-phenyl-4-(butylamino)-naphtholquinoline-7,12-dione (Q1). This quinone effectively generates reactive oxygen species and semiquinone radicals inside cancer cells via a cycling redox reaction. Here it was demonstrated that in the absence of quinone-chelator ascorbic acid significantly accelerates the lipid peroxidation induced by both Fe(II) and Cu(II) ions. It has been shown also that Q1 chelate complexes with Fe(II) and Cu(II) ions are redox active in the LA micelles oxidation. No effect of ascorbate was detected on the reactivity of chelate complex with Fe(II) ions. On the other hand, ascorbate performs pro-oxidant activity in Q1-Cu(II) complex induced reaction. We can conclude that ascorbate-driven redox cycling of Q1 may promote its anti-tumor activity. |
format | Online Article Text |
id | pubmed-8869476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88694762022-02-25 The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity Selyutina, Olga Yu. Kononova, Polina A. Koshman, Vladimir E. Fedenok, Lidiya G. Polyakov, Nikolay E. Antioxidants (Basel) Article Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence of ascorbic acid on lipid peroxidation in a model system that mimics the cell membrane, namely micelles of linoleic acid (LA), induced by chelate complexes of iron and copper ions with quinone-chelator 2-phenyl-4-(butylamino)-naphtholquinoline-7,12-dione (Q1). This quinone effectively generates reactive oxygen species and semiquinone radicals inside cancer cells via a cycling redox reaction. Here it was demonstrated that in the absence of quinone-chelator ascorbic acid significantly accelerates the lipid peroxidation induced by both Fe(II) and Cu(II) ions. It has been shown also that Q1 chelate complexes with Fe(II) and Cu(II) ions are redox active in the LA micelles oxidation. No effect of ascorbate was detected on the reactivity of chelate complex with Fe(II) ions. On the other hand, ascorbate performs pro-oxidant activity in Q1-Cu(II) complex induced reaction. We can conclude that ascorbate-driven redox cycling of Q1 may promote its anti-tumor activity. MDPI 2022-02-13 /pmc/articles/PMC8869476/ /pubmed/35204258 http://dx.doi.org/10.3390/antiox11020376 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Selyutina, Olga Yu. Kononova, Polina A. Koshman, Vladimir E. Fedenok, Lidiya G. Polyakov, Nikolay E. The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity |
title | The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity |
title_full | The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity |
title_fullStr | The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity |
title_full_unstemmed | The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity |
title_short | The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity |
title_sort | interplay of ascorbic acid with quinones-chelators—influence on lipid peroxidation: insight into anticancer activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869476/ https://www.ncbi.nlm.nih.gov/pubmed/35204258 http://dx.doi.org/10.3390/antiox11020376 |
work_keys_str_mv | AT selyutinaolgayu theinterplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT kononovapolinaa theinterplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT koshmanvladimire theinterplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT fedenoklidiyag theinterplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT polyakovnikolaye theinterplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT selyutinaolgayu interplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT kononovapolinaa interplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT koshmanvladimire interplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT fedenoklidiyag interplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity AT polyakovnikolaye interplayofascorbicacidwithquinoneschelatorsinfluenceonlipidperoxidationinsightintoanticanceractivity |