Cargando…

Non-Destructive Monitoring via Electrochemical NADH Detection in Murine Cells

Nicotinamide adenine dinucleotide (NADH) is an important cofactor involved in metabolic redox reactions in living cells. The detection of NADH in living animal cells is a challenge. We developed a one-step monitoring method for NADH via an electrocatalytic reaction that uses a surface-modified, scre...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Ju Kyung, Suh, Han Na, Yoon, Sung Hoon, Lee, Kyu Hong, Ahn, Sae Young, Kim, Hyung Jin, Kim, Sang Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869533/
https://www.ncbi.nlm.nih.gov/pubmed/35200367
http://dx.doi.org/10.3390/bios12020107
Descripción
Sumario:Nicotinamide adenine dinucleotide (NADH) is an important cofactor involved in metabolic redox reactions in living cells. The detection of NADH in living animal cells is a challenge. We developed a one-step monitoring method for NADH via an electrocatalytic reaction that uses a surface-modified, screen-printed electrode (SPE) having a redox active monolayer 4′-mercapto-N-phenlyquinone diamine (NPQD) formed by a self-assembled monolayer (SAM) of an aromatic thiol, 4-aminothiophenol (4-ATP). This electrode has a limit of detection (LOD) of 0.49 μM and a sensitivity of 0.0076 ± 0.0006 μM/μA in cell culture media, which indicates that it retains its selectivity. The applicability of this NADH sensor was demonstrated for the first time by cell viability monitoring via NADH-sensing in cell culture supernatants.