Cargando…
Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development
Kidney disease patients may have concurrent chronic kidney disease-associated mineral bone disorder and hypertension. Cardiovascular disease (CVD) and neuropathy occur due to kidney failure-induced accumulation of uremic toxins in the body. Indoxyl sulfate (IS), a product of indole metabolism in the...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869691/ https://www.ncbi.nlm.nih.gov/pubmed/35204282 http://dx.doi.org/10.3390/antiox11020400 |
_version_ | 1784656556853297152 |
---|---|
author | Tang, Paul Wei-Hua Wu, Ping-Hsun Lin, Yi-Ting Chiu, Chen-Hao Cheng, Tien-Li Guan, Wen-Hui Lin, Hugo You-Hsien Lee, Kun-Tai Chen, Yau-Hung Chiu, Chien-Chih Liu, Wangta |
author_facet | Tang, Paul Wei-Hua Wu, Ping-Hsun Lin, Yi-Ting Chiu, Chen-Hao Cheng, Tien-Li Guan, Wen-Hui Lin, Hugo You-Hsien Lee, Kun-Tai Chen, Yau-Hung Chiu, Chien-Chih Liu, Wangta |
author_sort | Tang, Paul Wei-Hua |
collection | PubMed |
description | Kidney disease patients may have concurrent chronic kidney disease-associated mineral bone disorder and hypertension. Cardiovascular disease (CVD) and neuropathy occur due to kidney failure-induced accumulation of uremic toxins in the body. Indoxyl sulfate (IS), a product of indole metabolism in the liver, is produced from tryptophan by the intestinal flora and is ultimately excreted through the kidneys. Hemodialysis helps renal failure patients eliminate many nephrotoxins, except for IS, which leads to a poor prognosis. Although the impacts of IS on cardiac and renal development have been well documented using mouse and rat models, other model organisms, such as zebrafish, have rarely been studied. The zebrafish genome shares at least 70% similarity with the human genome; therefore, zebrafish are ideal model organisms for studying vertebrate development, including renal development. In this study, we aimed to investigate the impact of IS on the development of zebrafish embryos, especially cardiac and renal development. At 24 h postfertilization (hpf), zebrafish were exposed to IS at concentrations ranging from 2.5 to 10 mM. IS reduced survival and the hatching rate, caused cardiac edema, increased mortality, and shortened the body length of zebrafish embryos. In addition, IS decreased heart rates and renal function. IS affected zebrafish development via the ROS and MAPK pathways, which subsequently led to inflammation in the embryos. The results suggest that IS interferes with cardiac and renal development in zebrafish embryos, providing new evidence about the toxicity of IS to aquatic organisms and new insights for the assessment of human health risks. Accordingly, we suggest that zebrafish studies can ideally complement mouse model studies to allow the simultaneous and comprehensive investigation of the physiological impacts of uremic endotheliotoxins, such as IS, on cardiac and renal development. |
format | Online Article Text |
id | pubmed-8869691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88696912022-02-25 Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development Tang, Paul Wei-Hua Wu, Ping-Hsun Lin, Yi-Ting Chiu, Chen-Hao Cheng, Tien-Li Guan, Wen-Hui Lin, Hugo You-Hsien Lee, Kun-Tai Chen, Yau-Hung Chiu, Chien-Chih Liu, Wangta Antioxidants (Basel) Article Kidney disease patients may have concurrent chronic kidney disease-associated mineral bone disorder and hypertension. Cardiovascular disease (CVD) and neuropathy occur due to kidney failure-induced accumulation of uremic toxins in the body. Indoxyl sulfate (IS), a product of indole metabolism in the liver, is produced from tryptophan by the intestinal flora and is ultimately excreted through the kidneys. Hemodialysis helps renal failure patients eliminate many nephrotoxins, except for IS, which leads to a poor prognosis. Although the impacts of IS on cardiac and renal development have been well documented using mouse and rat models, other model organisms, such as zebrafish, have rarely been studied. The zebrafish genome shares at least 70% similarity with the human genome; therefore, zebrafish are ideal model organisms for studying vertebrate development, including renal development. In this study, we aimed to investigate the impact of IS on the development of zebrafish embryos, especially cardiac and renal development. At 24 h postfertilization (hpf), zebrafish were exposed to IS at concentrations ranging from 2.5 to 10 mM. IS reduced survival and the hatching rate, caused cardiac edema, increased mortality, and shortened the body length of zebrafish embryos. In addition, IS decreased heart rates and renal function. IS affected zebrafish development via the ROS and MAPK pathways, which subsequently led to inflammation in the embryos. The results suggest that IS interferes with cardiac and renal development in zebrafish embryos, providing new evidence about the toxicity of IS to aquatic organisms and new insights for the assessment of human health risks. Accordingly, we suggest that zebrafish studies can ideally complement mouse model studies to allow the simultaneous and comprehensive investigation of the physiological impacts of uremic endotheliotoxins, such as IS, on cardiac and renal development. MDPI 2022-02-16 /pmc/articles/PMC8869691/ /pubmed/35204282 http://dx.doi.org/10.3390/antiox11020400 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tang, Paul Wei-Hua Wu, Ping-Hsun Lin, Yi-Ting Chiu, Chen-Hao Cheng, Tien-Li Guan, Wen-Hui Lin, Hugo You-Hsien Lee, Kun-Tai Chen, Yau-Hung Chiu, Chien-Chih Liu, Wangta Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development |
title | Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development |
title_full | Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development |
title_fullStr | Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development |
title_full_unstemmed | Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development |
title_short | Zebrafish Model-Based Assessment of Indoxyl Sulfate-Induced Oxidative Stress and Its Impact on Renal and Cardiac Development |
title_sort | zebrafish model-based assessment of indoxyl sulfate-induced oxidative stress and its impact on renal and cardiac development |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869691/ https://www.ncbi.nlm.nih.gov/pubmed/35204282 http://dx.doi.org/10.3390/antiox11020400 |
work_keys_str_mv | AT tangpaulweihua zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT wupinghsun zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT linyiting zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT chiuchenhao zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT chengtienli zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT guanwenhui zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT linhugoyouhsien zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT leekuntai zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT chenyauhung zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT chiuchienchih zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment AT liuwangta zebrafishmodelbasedassessmentofindoxylsulfateinducedoxidativestressanditsimpactonrenalandcardiacdevelopment |