Cargando…

Precision Medicine for BRCA/PALB2-Mutated Pancreatic Cancer and Emerging Strategies to Improve Therapeutic Responses to PARP Inhibition

SIMPLE SUMMARY: For the small subset of pancreatic ductal adenocarcinoma (PDAC) patients with loss-of-function mutations to BRCA1/2 or PALB2, both first-line and maintenance therapy differs significantly. These mutations confer a loss of double-strand break DNA homologous recombination (HR), substan...

Descripción completa

Detalles Bibliográficos
Autor principal: Principe, Daniel R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869830/
https://www.ncbi.nlm.nih.gov/pubmed/35205643
http://dx.doi.org/10.3390/cancers14040897
Descripción
Sumario:SIMPLE SUMMARY: For the small subset of pancreatic ductal adenocarcinoma (PDAC) patients with loss-of-function mutations to BRCA1/2 or PALB2, both first-line and maintenance therapy differs significantly. These mutations confer a loss of double-strand break DNA homologous recombination (HR), substantially altering drug sensitivities. In this review, we discuss the current treatment guidelines for PDAC tumors deficient in HR, as well as newly emerging strategies to improve drug responses in this population. We also highlight additional patient populations in which these strategies may also be effective, and novel strategies aiming to confer similar drug sensitivity to tumors proficient in HR repair. ABSTRACT: Pancreatic cancer is projected to become the second leading cause of cancer-related death by 2030. As patients typically present with advanced disease and show poor responses to broad-spectrum chemotherapy, overall survival remains a dismal 10%. This underscores an urgent clinical need to identify new therapeutic approaches for PDAC patients. Precision medicine is now the standard of care for several difficult-to-treat cancer histologies. Such approaches involve the identification of a clinically actionable molecular feature, which is matched to an appropriate targeted therapy. Selective poly (ADP-ribose) polymerase (PARP) inhibitors such as Niraparib, Olaparib, Talazoparib, Rucaparib, and Veliparib are now approved for several cancers with loss of high-fidelity double-strand break homologous recombination (HR), namely those with deleterious mutations to BRCA1/2, PALB2, and other functionally related genes. Recent evidence suggests that the presence of such mutations in pancreatic ductal adenocarcinoma (PDAC), the most common and lethal pancreatic cancer histotype, significantly alters drug responses both with respect to first-line chemotherapy and maintenance therapy. In this review, we discuss the current treatment paradigm for PDAC tumors with confirmed deficits in double-strand break HR, as well as emerging strategies to both improve responses to PARP inhibition in HR-deficient PDAC and confer sensitivity to tumors proficient in HR repair.