Cargando…
A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties
Extracellular vesicles (EVs) have gained considerable attention as vital circulating biomarkers since their structure and composition resemble the originating cells. The investigation of EVs’ biochemical and biophysical properties is of great importance to map them to their parental cells and to bet...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869858/ https://www.ncbi.nlm.nih.gov/pubmed/35200364 http://dx.doi.org/10.3390/bios12020104 |
_version_ | 1784656594418532352 |
---|---|
author | Zhang, Yuqian Murakami, Kazutoshi Borra, Vishnupriya J. Ozen, Mehmet Ozgun Demirci, Utkan Nakamura, Takahisa Esfandiari, Leyla |
author_facet | Zhang, Yuqian Murakami, Kazutoshi Borra, Vishnupriya J. Ozen, Mehmet Ozgun Demirci, Utkan Nakamura, Takahisa Esfandiari, Leyla |
author_sort | Zhang, Yuqian |
collection | PubMed |
description | Extracellular vesicles (EVs) have gained considerable attention as vital circulating biomarkers since their structure and composition resemble the originating cells. The investigation of EVs’ biochemical and biophysical properties is of great importance to map them to their parental cells and to better understand their functionalities. In this study, a novel frequency-dependent impedance measurement system has been developed to characterize EVs based on their unique dielectric properties. The system is composed of an insulator-based dielectrophoretic (iDEP) device to entrap and immobilize a cluster of vesicles followed by utilizing electrical impedance spectroscopy (EIS) to measure their impedance at a wide frequency spectrum, aiming to analyze both their membrane and cytosolic charge-dependent contents. The EIS was initially utilized to detect nano-size vesicles with different biochemical compositions, including liposomes synthesized with different lipid compositions, as well as EVs and lipoproteins with similar biophysical properties but dissimilar biochemical properties. Moreover, EVs derived from the same parental cells but treated with different culture conditions were characterized to investigate the correlation of impedance changes with biochemical properties and functionality in terms of pro-inflammatory responses. The system also showed the ability to discriminate between EVs derived from different cellular origins as well as among size-sorted EVs harbored from the same cellular origin. This proof-of-concept approach is the first step towards utilizing EIS as a label-free, non-invasive, and rapid sensor for detection and characterization of pathogenic EVs and other nanovesicles in the future. |
format | Online Article Text |
id | pubmed-8869858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88698582022-02-25 A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties Zhang, Yuqian Murakami, Kazutoshi Borra, Vishnupriya J. Ozen, Mehmet Ozgun Demirci, Utkan Nakamura, Takahisa Esfandiari, Leyla Biosensors (Basel) Article Extracellular vesicles (EVs) have gained considerable attention as vital circulating biomarkers since their structure and composition resemble the originating cells. The investigation of EVs’ biochemical and biophysical properties is of great importance to map them to their parental cells and to better understand their functionalities. In this study, a novel frequency-dependent impedance measurement system has been developed to characterize EVs based on their unique dielectric properties. The system is composed of an insulator-based dielectrophoretic (iDEP) device to entrap and immobilize a cluster of vesicles followed by utilizing electrical impedance spectroscopy (EIS) to measure their impedance at a wide frequency spectrum, aiming to analyze both their membrane and cytosolic charge-dependent contents. The EIS was initially utilized to detect nano-size vesicles with different biochemical compositions, including liposomes synthesized with different lipid compositions, as well as EVs and lipoproteins with similar biophysical properties but dissimilar biochemical properties. Moreover, EVs derived from the same parental cells but treated with different culture conditions were characterized to investigate the correlation of impedance changes with biochemical properties and functionality in terms of pro-inflammatory responses. The system also showed the ability to discriminate between EVs derived from different cellular origins as well as among size-sorted EVs harbored from the same cellular origin. This proof-of-concept approach is the first step towards utilizing EIS as a label-free, non-invasive, and rapid sensor for detection and characterization of pathogenic EVs and other nanovesicles in the future. MDPI 2022-02-09 /pmc/articles/PMC8869858/ /pubmed/35200364 http://dx.doi.org/10.3390/bios12020104 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yuqian Murakami, Kazutoshi Borra, Vishnupriya J. Ozen, Mehmet Ozgun Demirci, Utkan Nakamura, Takahisa Esfandiari, Leyla A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties |
title | A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties |
title_full | A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties |
title_fullStr | A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties |
title_full_unstemmed | A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties |
title_short | A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties |
title_sort | label-free electrical impedance spectroscopy for detection of clusters of extracellular vesicles based on their unique dielectric properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869858/ https://www.ncbi.nlm.nih.gov/pubmed/35200364 http://dx.doi.org/10.3390/bios12020104 |
work_keys_str_mv | AT zhangyuqian alabelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT murakamikazutoshi alabelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT borravishnupriyaj alabelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT ozenmehmetozgun alabelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT demirciutkan alabelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT nakamuratakahisa alabelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT esfandiarileyla alabelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT zhangyuqian labelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT murakamikazutoshi labelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT borravishnupriyaj labelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT ozenmehmetozgun labelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT demirciutkan labelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT nakamuratakahisa labelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties AT esfandiarileyla labelfreeelectricalimpedancespectroscopyfordetectionofclustersofextracellularvesiclesbasedontheiruniquedielectricproperties |