Cargando…
Knowns and Unknowns about CAR-T Cell Dysfunction
SIMPLE SUMMARY: The primary issue of adoptive cell therapy is the poor in vivo persistence. In this context, it is necessary to clarify the fundamental mechanisms of T cell dysfunction. Here we review common dysfunctional states, including exhaustion and senescence, and discuss the challenges associ...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870103/ https://www.ncbi.nlm.nih.gov/pubmed/35205827 http://dx.doi.org/10.3390/cancers14041078 |
Sumario: | SIMPLE SUMMARY: The primary issue of adoptive cell therapy is the poor in vivo persistence. In this context, it is necessary to clarify the fundamental mechanisms of T cell dysfunction. Here we review common dysfunctional states, including exhaustion and senescence, and discuss the challenges associated with phenotypical characterization of these T cell subsets. We overview the heterogeneity among exhausted T cells as well as mechanisms by which T cells get reinvigorated by checkpoint inhibitors. We emphasize that some cancers not responding to such treatment may activate distinct T cell dysfunction programs. Finally, we describe the dysfunction-promoting mechanisms specific for CAR-T cells and the ways to mitigate them. ABSTRACT: Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation. |
---|