Cargando…

A Prospective Phase II Study of Automated Non-Coplanar VMAT for Recurrent Head and Neck Cancer: Initial Report of Feasibility, Safety, and Patient-Reported Outcomes

SIMPLE SUMMARY: The delivery of higher radiation doses has been shown to increase local control, and ultimately survival, for head and neck cancer patients, but highly conformal dose distributions are necessary to minimize normal tissue toxicity. Varian’s HyperArc non-coplanar automated treatment pl...

Descripción completa

Detalles Bibliográficos
Autores principales: Woods, Kaley E., Ma, Ting Martin, Cook, Kiri A., Morris, Eric D., Gao, Yu, Sheng, Ke, Kishan, Amar U., Hegde, John V., Felix, Carol, Basehart, Vincent, Narahara, Kelsey, Shen, Zhouhuizi, Tenn, Stephen, Steinberg, Michael L., Chin, Robert K., Cao, Minsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870161/
https://www.ncbi.nlm.nih.gov/pubmed/35205686
http://dx.doi.org/10.3390/cancers14040939
Descripción
Sumario:SIMPLE SUMMARY: The delivery of higher radiation doses has been shown to increase local control, and ultimately survival, for head and neck cancer patients, but highly conformal dose distributions are necessary to minimize normal tissue toxicity. Varian’s HyperArc non-coplanar automated treatment planning and delivery technique has been shown to improve dose conformity for intracranial treatment, but its safety and efficacy for head and neck cancer treatment has yet to be verified. This study evaluates the initial results of a prospective clinical trial using HyperArc for recurrent head and neck cancer patients. We demonstrated that HyperArc can enable significant tumor dose escalation compared to conventional volumetric modulated arc therapy (VMAT) planning while minimizing the dose to organs at risk. Treatment delivery was feasible and safe, with minimal treatment-related toxicities and positive patient-reported quality of life measures. ABSTRACT: This study reports the initial results for the first 15 patients on a prospective phase II clinical trial exploring the safety, feasibility, and efficacy of the HyperArc technique for recurrent head and neck cancer treatment. Eligible patients were simulated and planned with both conventional VMAT and HyperArc techniques and the plan with superior dosimetry was selected for treatment. Dosimetry, delivery feasibility and safety, treatment-related toxicity, and patient-reported quality of life (QOL) were all evaluated. HyperArc was chosen over conventional VMAT for all 15 patients and enabled statistically significant increases in dose conformity (R50% reduced by 1.2 ± 2.1, p < 0.05) and mean PTV and GTV doses (by 15.7 ± 4.9 Gy, p < 0.01 and 17.1 ± 6.0 Gy, p < 0.01, respectively). The average HyperArc delivery was 2.8 min longer than conventional VMAT (p < 0.01), and the mean intrafraction motion was ≤ 0.5 ± 0.4 mm and ≤0.3 ± 0.1°. With a median follow-up of 12 months, treatment-related toxicity was minimal (only one grade 3 acute toxicity above baseline) and patient-reported QOL metrics were favorable. HyperArc enabled superior dosimetry and significant target dose escalation compared to conventional VMAT planning, and treatment delivery was feasible, safe, and well-tolerated by patients.