Cargando…

Current Status of CRISPR/Cas9 Application in Clinical Cancer Research: Opportunities and Challenges

SIMPLE SUMMARY: It is widely believed that cancer is developed due to changes in the genetic codes of our DNA, leading to abnormal growth of cells. In the past few years scientists have discovered a system which is used as an immune mechanism by bacteria in order to cleave the invading viruses, call...

Descripción completa

Detalles Bibliográficos
Autores principales: Rafii, Saeed, Tashkandi, Emad, Bukhari, Nedal, Al-Shamsi, Humaid O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870204/
https://www.ncbi.nlm.nih.gov/pubmed/35205694
http://dx.doi.org/10.3390/cancers14040947
Descripción
Sumario:SIMPLE SUMMARY: It is widely believed that cancer is developed due to changes in the genetic codes of our DNA, leading to abnormal growth of cells. In the past few years scientists have discovered a system which is used as an immune mechanism by bacteria in order to cleave the invading viruses, called CRISPR/Cas9. Exploiting this system in humans will allow scientists to attempt to edit genetic errors that lead to cancer. This scientific breakthrough has a lot of potential for treating a variety of diseases, including cancer. It has already been successfully used in treatment of some types of blood cancer. In this article, we discuss the opportunities and limitations of CRISPR/Cas9 in treatment of solid cancer. ABSTRACT: Cancer is considered by not only multiple genetic but also epigenetic amendments that drive malignant cell propagation and consult chemo-resistance. The ability to correct or ablate such mutations holds enormous promise for battling cancer. Recently, because of its great efficiency and feasibility, the CRISPR-Cas9 advanced genome editing technique has been extensively considered for therapeutic investigations of cancers. Several studies have used the CRISPR-Cas9 technique for editing cancer cell genomic DNA in cells and animal cancer models and have shown therapeutic potential in intensifying anti-cancer protocols. Moreover, CRISPR-Cas9 may be used to correct oncogenic mutations, discover anticancer drugs, and engineer immune cells and oncolytic viruses for immunotherapeutic treatment of cancer. We herein discuss the challenges and opportunities for translating therapeutic methods with CRISPR-Cas9 for clinical use and suggest potential directions of the CRISPR-Cas9 system for future cancer therapy.