Cargando…
Machine Learning-Based Analysis of Glioma Grades Reveals Co-Enrichment
SIMPLE SUMMARY: Gliomas are heterogenous types of cancer, therefore the therapy should be personalized and targeted toward specific pathways. We developed a methodology that corrected strong batch effects from The Cancer Genome Atlas datasets and estimated glioma grade-specific co-enrichment mechani...
Autores principales: | Garbulowski, Mateusz, Smolinska, Karolina, Çabuk, Uğur, Yones, Sara A., Celli, Ludovica, Yaz, Esma Nur, Barrenäs, Fredrik, Diamanti, Klev, Wadelius, Claes, Komorowski, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870250/ https://www.ncbi.nlm.nih.gov/pubmed/35205761 http://dx.doi.org/10.3390/cancers14041014 |
Ejemplares similares
-
Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
R.ROSETTA: an interpretable machine learning framework
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
por: Yones, Sara A., et al.
Publicado: (2022) -
MetaFetcheR: An R Package for Complete Mapping of Small-Compound Data
por: Yones, Sara A., et al.
Publicado: (2021) -
Multifaceted regulation of hepatic lipid metabolism by YY1
por: Pan, Gang, et al.
Publicado: (2021)