Cargando…
Deep Learning Architecture Reduction for fMRI Data
In recent years, deep learning models have demonstrated an inherently better ability to tackle non-linear classification tasks, due to advances in deep learning architectures. However, much remains to be achieved, especially in designing deep convolutional neural network (CNN) configurations. The nu...
Autores principales: | Alvarez-Gonzalez, Ruben, Mendez-Vazquez, Andres |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870362/ https://www.ncbi.nlm.nih.gov/pubmed/35203997 http://dx.doi.org/10.3390/brainsci12020235 |
Ejemplares similares
-
Design of Deep Learning Model for Task-Evoked fMRI Data Classification
por: Huang, Xiaojie, et al.
Publicado: (2021) -
Diagnosis of Schizophrenia Based on Deep Learning Using fMRI
por: Zheng, JinChi, et al.
Publicado: (2021) -
Detection of ASD Children through Deep-Learning Application of fMRI
por: Feng, Min, et al.
Publicado: (2023) -
DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning
por: Hao, Yongfu, et al.
Publicado: (2017) -
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
por: Ge, Bao, et al.
Publicado: (2018)