Cargando…
Automatic Colorectal Cancer Screening Using Deep Learning in Spatial Light Interference Microscopy Data
The surgical pathology workflow currently adopted by clinics uses staining to reveal tissue architecture within thin sections. A trained pathologist then conducts a visual examination of these slices and, since the investigation is based on an empirical assessment, a certain amount of subjectivity i...
Autores principales: | Zhang, Jingfang K., Fanous, Michael, Sobh, Nahil, Kajdacsy-Balla, Andre, Popescu, Gabriel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870406/ https://www.ncbi.nlm.nih.gov/pubmed/35203365 http://dx.doi.org/10.3390/cells11040716 |
Ejemplares similares
-
Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)
por: Majeed, Hassaan, et al.
Publicado: (2018) -
Quantitative Histopathology of Stained Tissues using Color Spatial Light Interference Microscopy (cSLIM)
por: Majeed, Hassaan, et al.
Publicado: (2019) -
Spatial light interference microscopy (SLIM)
por: Wang, Zhuo, et al.
Publicado: (2011) -
Quantifying myelin content in brain tissue using color Spatial Light Interference Microscopy (cSLIM)
por: Fanous, Michael, et al.
Publicado: (2020) -
Tissue spatial correlation as cancer marker
por: Takabayashi, Masanori, et al.
Publicado: (2019)