Cargando…
Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression
BACKGROUND: Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870460/ https://www.ncbi.nlm.nih.gov/pubmed/35202405 http://dx.doi.org/10.1371/journal.pone.0249151 |
_version_ | 1784656756246315008 |
---|---|
author | Muthamilselvan, Sangeetha Raghavendran, Abirami Palaniappan, Ashok |
author_facet | Muthamilselvan, Sangeetha Raghavendran, Abirami Palaniappan, Ashok |
author_sort | Muthamilselvan, Sangeetha |
collection | PubMed |
description | BACKGROUND: Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer (CRC). METHODS: The methylation β-matrix was derived from the public-domain TCGA data, converted into M-value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an ensemble of approaches involving stage-differentiated modelling of methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) were identified using a contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a consensus analysis, followed by matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the impact of methylation patterns of consensus stage-salient biomarkers on disease prognosis. RESULTS: We found significant genome-wide changes in methylation patterns in cancer cases relative to controls agnostic of stage. The stage-differentiated models yielded the following consensus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers were significantly hypermethylated in the promoter regions, indicating down-regulation of expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and represents a novel early-stage epigenetic biomarker / target. CONCLUSIONS: We have designed and executed a workflow for stage-differentiated epigenomic analysis of colorectal cancer progression, and identified several stage-salient diagnostic biomarkers, and an early-stage prognostic biomarker panel. The study has led to the discovery of an alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in tumor pathophysiology. |
format | Online Article Text |
id | pubmed-8870460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-88704602022-02-25 Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression Muthamilselvan, Sangeetha Raghavendran, Abirami Palaniappan, Ashok PLoS One Research Article BACKGROUND: Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer (CRC). METHODS: The methylation β-matrix was derived from the public-domain TCGA data, converted into M-value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an ensemble of approaches involving stage-differentiated modelling of methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) were identified using a contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a consensus analysis, followed by matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the impact of methylation patterns of consensus stage-salient biomarkers on disease prognosis. RESULTS: We found significant genome-wide changes in methylation patterns in cancer cases relative to controls agnostic of stage. The stage-differentiated models yielded the following consensus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers were significantly hypermethylated in the promoter regions, indicating down-regulation of expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and represents a novel early-stage epigenetic biomarker / target. CONCLUSIONS: We have designed and executed a workflow for stage-differentiated epigenomic analysis of colorectal cancer progression, and identified several stage-salient diagnostic biomarkers, and an early-stage prognostic biomarker panel. The study has led to the discovery of an alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in tumor pathophysiology. Public Library of Science 2022-02-24 /pmc/articles/PMC8870460/ /pubmed/35202405 http://dx.doi.org/10.1371/journal.pone.0249151 Text en © 2022 Muthamilselvan et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Muthamilselvan, Sangeetha Raghavendran, Abirami Palaniappan, Ashok Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression |
title | Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression |
title_full | Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression |
title_fullStr | Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression |
title_full_unstemmed | Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression |
title_short | Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression |
title_sort | stage-differentiated ensemble modeling of dna methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870460/ https://www.ncbi.nlm.nih.gov/pubmed/35202405 http://dx.doi.org/10.1371/journal.pone.0249151 |
work_keys_str_mv | AT muthamilselvansangeetha stagedifferentiatedensemblemodelingofdnamethylationlandscapesuncoverssalientbiomarkersandprognosticsignaturesincolorectalcancerprogression AT raghavendranabirami stagedifferentiatedensemblemodelingofdnamethylationlandscapesuncoverssalientbiomarkersandprognosticsignaturesincolorectalcancerprogression AT palaniappanashok stagedifferentiatedensemblemodelingofdnamethylationlandscapesuncoverssalientbiomarkersandprognosticsignaturesincolorectalcancerprogression |