Cargando…
Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes
Survival analysis following oncological treatments require specific analysis techniques to account for data considerations, such as failure to observe the time of event, patient withdrawal, loss to follow-up, and differential follow up. These techniques can include Kaplan-Meier and Cox proportional...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870464/ https://www.ncbi.nlm.nih.gov/pubmed/35202406 http://dx.doi.org/10.1371/journal.pone.0263661 |
_version_ | 1784656757219393536 |
---|---|
author | Hebert, April E. Kreaden, Usha S. Yankovsky, Ana Guo, Dongjing Li, Yang Lee, Shih-Hao Liu, Yuki Soito, Angela B. Massachi, Samira Slee, April E. |
author_facet | Hebert, April E. Kreaden, Usha S. Yankovsky, Ana Guo, Dongjing Li, Yang Lee, Shih-Hao Liu, Yuki Soito, Angela B. Massachi, Samira Slee, April E. |
author_sort | Hebert, April E. |
collection | PubMed |
description | Survival analysis following oncological treatments require specific analysis techniques to account for data considerations, such as failure to observe the time of event, patient withdrawal, loss to follow-up, and differential follow up. These techniques can include Kaplan-Meier and Cox proportional hazard analyses. However, studies do not always report overall survival (OS), disease-free survival (DFS), or cancer recurrence using hazard ratios, making the synthesis of such oncologic outcomes difficult. We propose a hierarchical utilization of methods to extract or estimate the hazard ratio to standardize time-to-event outcomes so that study inclusion into meta-analyses can be maximized. We also provide proof-of concept results from a statistical analysis that compares OS, DFS, and cancer recurrence for robotic surgery to open and non-robotic minimally invasive surgery. In our example, use of the proposed methodology would allow for the increase in data inclusion from 108 hazard ratios reported to 240 hazard ratios reported or estimated, resulting in an increase of 122%. While there are publications summarizing the motivation for these analyses, and comprehensive papers describing strategies to obtain estimates from published time-dependent analyses, we are not aware of a manuscript that describes a prospective framework for an analysis of this scale focusing on the inclusion of a maximum number of publications reporting on long-term oncologic outcomes incorporating various presentations of statistical data. |
format | Online Article Text |
id | pubmed-8870464 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-88704642022-02-25 Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes Hebert, April E. Kreaden, Usha S. Yankovsky, Ana Guo, Dongjing Li, Yang Lee, Shih-Hao Liu, Yuki Soito, Angela B. Massachi, Samira Slee, April E. PLoS One Research Article Survival analysis following oncological treatments require specific analysis techniques to account for data considerations, such as failure to observe the time of event, patient withdrawal, loss to follow-up, and differential follow up. These techniques can include Kaplan-Meier and Cox proportional hazard analyses. However, studies do not always report overall survival (OS), disease-free survival (DFS), or cancer recurrence using hazard ratios, making the synthesis of such oncologic outcomes difficult. We propose a hierarchical utilization of methods to extract or estimate the hazard ratio to standardize time-to-event outcomes so that study inclusion into meta-analyses can be maximized. We also provide proof-of concept results from a statistical analysis that compares OS, DFS, and cancer recurrence for robotic surgery to open and non-robotic minimally invasive surgery. In our example, use of the proposed methodology would allow for the increase in data inclusion from 108 hazard ratios reported to 240 hazard ratios reported or estimated, resulting in an increase of 122%. While there are publications summarizing the motivation for these analyses, and comprehensive papers describing strategies to obtain estimates from published time-dependent analyses, we are not aware of a manuscript that describes a prospective framework for an analysis of this scale focusing on the inclusion of a maximum number of publications reporting on long-term oncologic outcomes incorporating various presentations of statistical data. Public Library of Science 2022-02-24 /pmc/articles/PMC8870464/ /pubmed/35202406 http://dx.doi.org/10.1371/journal.pone.0263661 Text en © 2022 Hebert et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hebert, April E. Kreaden, Usha S. Yankovsky, Ana Guo, Dongjing Li, Yang Lee, Shih-Hao Liu, Yuki Soito, Angela B. Massachi, Samira Slee, April E. Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes |
title | Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes |
title_full | Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes |
title_fullStr | Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes |
title_full_unstemmed | Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes |
title_short | Methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes |
title_sort | methodology to standardize heterogeneous statistical data presentations for combining time-to-event oncologic outcomes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870464/ https://www.ncbi.nlm.nih.gov/pubmed/35202406 http://dx.doi.org/10.1371/journal.pone.0263661 |
work_keys_str_mv | AT hebertaprile methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT kreadenushas methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT yankovskyana methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT guodongjing methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT liyang methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT leeshihhao methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT liuyuki methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT soitoangelab methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT massachisamira methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes AT sleeaprile methodologytostandardizeheterogeneousstatisticaldatapresentationsforcombiningtimetoeventoncologicoutcomes |