Cargando…
Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation
PURPOSE: Early detection and classification of bone tumors in the proximal femur is crucial for their successful treatment. This study aimed to develop an artificial intelligence (AI) model to classify bone tumors in the proximal femur on plain radiographs. METHODS: Standard anteroposterior hip radi...
Autores principales: | Park, Chan-Woo, Oh, Seong-Je, Kim, Kyung-Su, Jang, Min-Chang, Kim, Il Su, Lee, Young-Keun, Chung, Myung Jin, Cho, Baek Hwan, Seo, Sung-Wook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870496/ https://www.ncbi.nlm.nih.gov/pubmed/35202410 http://dx.doi.org/10.1371/journal.pone.0264140 |
Ejemplares similares
-
Are plain radiographs reliable in Lichtman classification?
por: Aydemir, Ahmet Nadir, et al.
Publicado: (2020) -
FemurTumorNet: Bone tumor classification in the proximal femur using DenseNet model based on radiographs
por: Pan, Canyu, et al.
Publicado: (2023) -
An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs
por: Kim, DH, et al.
Publicado: (2021) -
Proximal Humerus Fractures: Reliability of Neer Versus AO Classification on Plain Radiographs and Computed Tomography
por: Stoddart, Michael, et al.
Publicado: (2020) -
The role of artificial intelligence in plain chest radiographs interpretation during the Covid-19 pandemic
por: AlNuaimi, Dana, et al.
Publicado: (2022)