Cargando…
Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction
Seawater intrusion associated with decreasing groundwater levels and rising seawater levels may affect freshwater species and their parasites. While brackish water certainly impacts freshwater systems globally, its impact on disease transmission is largely unknown. This study examined the effect of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870500/ https://www.ncbi.nlm.nih.gov/pubmed/35202408 http://dx.doi.org/10.1371/journal.pntd.0009524 |
_version_ | 1784656772992073728 |
---|---|
author | Yu, Ao Vannatta, J. Trevor. Gutierrez, Stephanie O. Minchella, Dennis J. |
author_facet | Yu, Ao Vannatta, J. Trevor. Gutierrez, Stephanie O. Minchella, Dennis J. |
author_sort | Yu, Ao |
collection | PubMed |
description | Seawater intrusion associated with decreasing groundwater levels and rising seawater levels may affect freshwater species and their parasites. While brackish water certainly impacts freshwater systems globally, its impact on disease transmission is largely unknown. This study examined the effect of artificial seawater on host-parasite interactions using a freshwater snail host, Biomphalaria alexandrina, and the human trematode parasite Schistosoma mansoni. To evaluate the impact of increasing salinity on disease transmission four variables were analyzed: snail survival, snail reproduction, infection prevalence, and the survival of the parasite infective stage (cercariae). We found a decrease in snail survival, snail egg mass production, and snail infection prevalence as salinity increases. However, cercarial survival peaked at an intermediate salinity value. Our results suggest that seawater intrusion into freshwaters has the potential to decrease schistosome transmission to humans. |
format | Online Article Text |
id | pubmed-8870500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-88705002022-02-25 Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction Yu, Ao Vannatta, J. Trevor. Gutierrez, Stephanie O. Minchella, Dennis J. PLoS Negl Trop Dis Research Article Seawater intrusion associated with decreasing groundwater levels and rising seawater levels may affect freshwater species and their parasites. While brackish water certainly impacts freshwater systems globally, its impact on disease transmission is largely unknown. This study examined the effect of artificial seawater on host-parasite interactions using a freshwater snail host, Biomphalaria alexandrina, and the human trematode parasite Schistosoma mansoni. To evaluate the impact of increasing salinity on disease transmission four variables were analyzed: snail survival, snail reproduction, infection prevalence, and the survival of the parasite infective stage (cercariae). We found a decrease in snail survival, snail egg mass production, and snail infection prevalence as salinity increases. However, cercarial survival peaked at an intermediate salinity value. Our results suggest that seawater intrusion into freshwaters has the potential to decrease schistosome transmission to humans. Public Library of Science 2022-02-24 /pmc/articles/PMC8870500/ /pubmed/35202408 http://dx.doi.org/10.1371/journal.pntd.0009524 Text en © 2022 Yu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yu, Ao Vannatta, J. Trevor. Gutierrez, Stephanie O. Minchella, Dennis J. Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction |
title | Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction |
title_full | Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction |
title_fullStr | Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction |
title_full_unstemmed | Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction |
title_short | Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction |
title_sort | opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870500/ https://www.ncbi.nlm.nih.gov/pubmed/35202408 http://dx.doi.org/10.1371/journal.pntd.0009524 |
work_keys_str_mv | AT yuao opportunityorcatastropheeffectofseasaltonhostparasitesurvivalandreproduction AT vannattajtrevor opportunityorcatastropheeffectofseasaltonhostparasitesurvivalandreproduction AT gutierrezstephanieo opportunityorcatastropheeffectofseasaltonhostparasitesurvivalandreproduction AT minchelladennisj opportunityorcatastropheeffectofseasaltonhostparasitesurvivalandreproduction |