Cargando…

DKK3, Downregulated in Invasive Epithelial Ovarian Cancer, Is Associated with Chemoresistance and Enhanced Paclitaxel Susceptibility via Inhibition of the β-Catenin-P-Glycoprotein Signaling Pathway

SIMPLE SUMMARY: Dickkopf-3 (DKK3) is considered a tumor suppressor as it possesses anti-tumoral properties and is frequently downregulated in various cancers. However, the role of DKK3 in ovarian cancer is not known. In this study, we showed that DKK3 loss occurred in 56.1% of patients with ovarian...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Que Thanh Thanh, Park, Hwang Shin, Lee, Tae Jin, Choi, Kyung-Mi, Park, Joong Yull, Kim, Daehan, Kim, Jae Hyung, Park, Junsoo, Lee, Eun-Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870560/
https://www.ncbi.nlm.nih.gov/pubmed/35205672
http://dx.doi.org/10.3390/cancers14040924
Descripción
Sumario:SIMPLE SUMMARY: Dickkopf-3 (DKK3) is considered a tumor suppressor as it possesses anti-tumoral properties and is frequently downregulated in various cancers. However, the role of DKK3 in ovarian cancer is not known. In this study, we showed that DKK3 loss occurred in 56.1% of patients with ovarian cancer and that it was significantly associated with poor survival and chemoresistance. Secreted DKK3 possessed anti-tumoral properties and enhanced paclitaxel susceptibility by inhibiting the β-catenin-P-glycoprotein signaling pathway in ovarian cancer. This study revealed promising therapeutic effects of secreted DKK3, which targets paclitaxel-resistant ovarian cancer. ABSTRACT: Dickkopf-3 (DKK3), a tumor suppressor, is frequently downregulated in various cancers. However, the role of DKK3 in ovarian cancer has not been evaluated. This study aimed to assess aberrant DKK3 expression and its role in epithelial ovarian carcinoma. DKK3 expression was assessed using immunohistochemistry with tissue blocks from 82 patients with invasive carcinoma, and 15 normal, 19 benign, and 10 borderline tumors as controls. Survival data were analyzed using Kaplan–Meier and Cox regression analysis. Paclitaxel-resistant cells were established using TOV-21G and OV-90 cell lines. Protein expression was assessed using Western blotting and immunofluorescence analysis. Cell viability was assessed using the MT assay and 3D-spheroid assay. Cell migration was determined using a migration assay. DKK3 was significantly downregulated in invasive carcinoma compared to that in normal, benign, and borderline tumors. DKK3 loss occurred in 56.1% invasive carcinomas and was significantly associated with disease-free survival and chemoresistance in serous adenocarcinoma. DKK3 was lost in paclitaxel-resistant cells, while β-catenin and P-glycoprotein were upregulated. Exogenous secreted DKK3, incorporated by cells, enhanced anti-tumoral effect and paclitaxel susceptibility in paclitaxel-resistant cells, and reduced the levels of active β-catenin and its downstream P-glycoprotein, suggesting that DKK3 can be used as a therapeutic for targeting paclitaxel-resistant cancer.