Cargando…
Concordance rate of radiologists and a commercialized deep-learning solution for chest X-ray: Real-world experience with a multicenter health screening cohort
PURPOSE: Lunit INSIGHT CXR (Lunit) is a commercially available deep-learning algorithm-based decision support system for chest radiography (CXR). This retrospective study aimed to evaluate the concordance rate of radiologists and Lunit for thoracic abnormalities in a multicenter health screening coh...
Autores principales: | Kim, Eun Young, Kim, Young Jae, Choi, Won-Jun, Jeon, Ji Soo, Kim, Moon Young, Oh, Dong Hyun, Jin, Kwang Nam, Cho, Young Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870572/ https://www.ncbi.nlm.nih.gov/pubmed/35202417 http://dx.doi.org/10.1371/journal.pone.0264383 |
Ejemplares similares
-
Chest x-ray in the COVID-19 pandemic: Radiologists’ real-world reader performance
por: Cozzi, Andrea, et al.
Publicado: (2020) -
Concordance of chest x-ray with chest CT by body mass index
por: Heston, Thomas F., et al.
Publicado: (2023) -
Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: a multicenter respiratory outpatient diagnostic cohort study
por: Jin, Kwang Nam, et al.
Publicado: (2022) -
Artificial Intelligence-Based Identification of Normal Chest Radiographs: A Simulation Study in a Multicenter Health Screening Cohort
por: Yoo, Hyunsuk, et al.
Publicado: (2022) -
Segmentation Performance Comparison Considering Regional Characteristics in Chest X-ray Using Deep Learning
por: Lee, Hyo Min, et al.
Publicado: (2022)