Cargando…
Development of Gene Expression-Based Random Forest Model for Predicting Neoadjuvant Chemotherapy Response in Triple-Negative Breast Cancer
SIMPLE SUMMARY: Only 20–50% of patients with triple negative breast cancer achieve a pathological complete response from neoadjuvant chemotherapy, a strong indicator of patient survival. Therefore, there is an urgent need for a reliable predictive model of the patient’s pathological complete respons...
Autores principales: | Park, Seongyong, Yi, Gwansu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870575/ https://www.ncbi.nlm.nih.gov/pubmed/35205629 http://dx.doi.org/10.3390/cancers14040881 |
Ejemplares similares
-
Histomorphological Factors Predicting the Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
por: Jung, Yoon Yang, et al.
Publicado: (2016) -
Comment on “Histomorphological Factors Predicting the Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer”
por: Altundag, Kadri
Publicado: (2017) -
Immune responses during neoadjuvant chemotherapy in triple negative breast cancer
por: Ghallab, Ahmed
Publicado: (2020) -
Efficacy and prognostic factors of neoadjuvant chemotherapy for triple-negative breast cancer
por: Ding, Feng, et al.
Publicado: (2022) -
Prediction of treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer by analysis of immune checkpoint protein expression
por: Asano, Yuka, et al.
Publicado: (2018)