Cargando…
Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study †
SIMPLE SUMMARY: In this manuscript, we present a statistical model for reliable and early prediction of treatment failure in patients with diffuse large B-cell lymphoma. The model combines measurable parameters—namely, the metabolic tumor volume and the metabolic heterogeneity, from baseline PET/CT...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870624/ https://www.ncbi.nlm.nih.gov/pubmed/35205765 http://dx.doi.org/10.3390/cancers14041018 |
_version_ | 1784656802366881792 |
---|---|
author | Genta, Sofia Ghilardi, Guido Cascione, Luciano Juskevicius, Darius Tzankov, Alexandar Schär, Sämi Milan, Lisa Pirosa, Maria Cristina Esposito, Fabiana Ruberto, Teresa Giovanella, Luca Hayoz, Stefanie Mamot, Christoph Dirnhofer, Stefan Zucca, Emanuele Ceriani, Luca |
author_facet | Genta, Sofia Ghilardi, Guido Cascione, Luciano Juskevicius, Darius Tzankov, Alexandar Schär, Sämi Milan, Lisa Pirosa, Maria Cristina Esposito, Fabiana Ruberto, Teresa Giovanella, Luca Hayoz, Stefanie Mamot, Christoph Dirnhofer, Stefan Zucca, Emanuele Ceriani, Luca |
author_sort | Genta, Sofia |
collection | PubMed |
description | SIMPLE SUMMARY: In this manuscript, we present a statistical model for reliable and early prediction of treatment failure in patients with diffuse large B-cell lymphoma. The model combines measurable parameters—namely, the metabolic tumor volume and the metabolic heterogeneity, from baseline PET/CT with the presence or absence of mutations in SOCS1 and CREBBP/EP300 and represents a promising tool for the design of clinical trials focused on tailoring treatment to the individual risk. According to our bioinformatics analysis, mutation profiling may not be needed in patients with high-risk PET/CT metrics. Hence, the proposed approach may help optimize economic resources avoiding costly, and likely unnecessary, DNA analysis in many patients. ABSTRACT: Accurate estimation of the progression risk after first-line therapy represents an unmet clinical need in diffuse large B-cell lymphoma (DLBCL). Baseline (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) parameters, together with genetic analysis of lymphoma cells, could refine the prediction of treatment failure. We evaluated the combined impact of mutation profiling and baseline PET/CT functional parameters on the outcome of DLBCL patients treated with the R-CHOP14 regimen in the SAKK38/07 clinical trial (NCT00544219). The concomitant presence of mutated SOCS1 with wild-type CREBBP and EP300 defined a group of patients with a favorable prognosis and 2-year progression-free survival (PFS) of 100%. Using an unsupervised recursive partitioning approach, we generated a classification-tree algorithm that predicts treatment outcomes. Patients with elevated metabolic tumor volume (MTV) and high metabolic heterogeneity (MH) (15%) had the highest risk of relapse. Patients with low MTV and favorable mutational profile (9%) had the lowest risk, while the remaining patients constituted the intermediate-risk group (76%). The resulting model stratified patients among three groups with 2-year PFS of 100%, 82%, and 42%, respectively (p < 0.001). |
format | Online Article Text |
id | pubmed-8870624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88706242022-02-25 Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study † Genta, Sofia Ghilardi, Guido Cascione, Luciano Juskevicius, Darius Tzankov, Alexandar Schär, Sämi Milan, Lisa Pirosa, Maria Cristina Esposito, Fabiana Ruberto, Teresa Giovanella, Luca Hayoz, Stefanie Mamot, Christoph Dirnhofer, Stefan Zucca, Emanuele Ceriani, Luca Cancers (Basel) Article SIMPLE SUMMARY: In this manuscript, we present a statistical model for reliable and early prediction of treatment failure in patients with diffuse large B-cell lymphoma. The model combines measurable parameters—namely, the metabolic tumor volume and the metabolic heterogeneity, from baseline PET/CT with the presence or absence of mutations in SOCS1 and CREBBP/EP300 and represents a promising tool for the design of clinical trials focused on tailoring treatment to the individual risk. According to our bioinformatics analysis, mutation profiling may not be needed in patients with high-risk PET/CT metrics. Hence, the proposed approach may help optimize economic resources avoiding costly, and likely unnecessary, DNA analysis in many patients. ABSTRACT: Accurate estimation of the progression risk after first-line therapy represents an unmet clinical need in diffuse large B-cell lymphoma (DLBCL). Baseline (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) parameters, together with genetic analysis of lymphoma cells, could refine the prediction of treatment failure. We evaluated the combined impact of mutation profiling and baseline PET/CT functional parameters on the outcome of DLBCL patients treated with the R-CHOP14 regimen in the SAKK38/07 clinical trial (NCT00544219). The concomitant presence of mutated SOCS1 with wild-type CREBBP and EP300 defined a group of patients with a favorable prognosis and 2-year progression-free survival (PFS) of 100%. Using an unsupervised recursive partitioning approach, we generated a classification-tree algorithm that predicts treatment outcomes. Patients with elevated metabolic tumor volume (MTV) and high metabolic heterogeneity (MH) (15%) had the highest risk of relapse. Patients with low MTV and favorable mutational profile (9%) had the lowest risk, while the remaining patients constituted the intermediate-risk group (76%). The resulting model stratified patients among three groups with 2-year PFS of 100%, 82%, and 42%, respectively (p < 0.001). MDPI 2022-02-17 /pmc/articles/PMC8870624/ /pubmed/35205765 http://dx.doi.org/10.3390/cancers14041018 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Genta, Sofia Ghilardi, Guido Cascione, Luciano Juskevicius, Darius Tzankov, Alexandar Schär, Sämi Milan, Lisa Pirosa, Maria Cristina Esposito, Fabiana Ruberto, Teresa Giovanella, Luca Hayoz, Stefanie Mamot, Christoph Dirnhofer, Stefan Zucca, Emanuele Ceriani, Luca Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study † |
title | Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study † |
title_full | Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study † |
title_fullStr | Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study † |
title_full_unstemmed | Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study † |
title_short | Integration of Baseline Metabolic Parameters and Mutational Profiles Predicts Long-Term Response to First-Line Therapy in DLBCL Patients: A Post Hoc Analysis of the SAKK38/07 Study † |
title_sort | integration of baseline metabolic parameters and mutational profiles predicts long-term response to first-line therapy in dlbcl patients: a post hoc analysis of the sakk38/07 study † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870624/ https://www.ncbi.nlm.nih.gov/pubmed/35205765 http://dx.doi.org/10.3390/cancers14041018 |
work_keys_str_mv | AT gentasofia integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT ghilardiguido integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT cascioneluciano integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT juskeviciusdarius integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT tzankovalexandar integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT scharsami integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT milanlisa integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT pirosamariacristina integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT espositofabiana integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT rubertoteresa integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT giovanellaluca integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT hayozstefanie integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT mamotchristoph integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT dirnhoferstefan integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT zuccaemanuele integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study AT cerianiluca integrationofbaselinemetabolicparametersandmutationalprofilespredictslongtermresponsetofirstlinetherapyindlbclpatientsaposthocanalysisofthesakk3807study |