Cargando…
Molecular Composition of Serum Exosomes Could Discriminate Rectal Cancer Patients with Different Responses to Neoadjuvant Radiotherapy
SIMPLE SUMMARY: Exosomes could be used as biomarkers to predict and monitor the response to anti-cancer treatment, yet relevant knowledge is very limited in the case of rectal cancer. Here we applied a combined proteomic and metabolomic approach to reveal exosome components connected with different...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870712/ https://www.ncbi.nlm.nih.gov/pubmed/35205741 http://dx.doi.org/10.3390/cancers14040993 |
Sumario: | SIMPLE SUMMARY: Exosomes could be used as biomarkers to predict and monitor the response to anti-cancer treatment, yet relevant knowledge is very limited in the case of rectal cancer. Here we applied a combined proteomic and metabolomic approach to reveal exosome components connected with different responses to neoadjuvant radiotherapy in this group of patients and processes associated with identified discriminatory molecules. Moreover, the composition of serum-derived exosomes and a whole plasma was analyzed in parallel to compare the biomarker potential of both specimens, which revealed the highest capacity of exosome proteome to discriminate samples of patients with different responses to radiotherapy. ABSTRACT: Identification of biomarkers that could be used for the prediction of the response to neoadjuvant radiotherapy (neo-RT) in locally advanced rectal cancer remains a challenge addressed by different experimental approaches. Exosomes and other classes of extracellular vesicles circulating in patients’ blood represent a novel type of liquid biopsy and a source of cancer biomarkers. Here, we used a combined proteomic and metabolomic approach based on mass spectrometry techniques for studying the molecular components of exosomes isolated from the serum of rectal cancer patients with different responses to neo-RT. This allowed revealing several proteins and metabolites associated with common pathways relevant for the response of rectal cancer patients to neo-RT, including immune system response, complement activation cascade, platelet functions, metabolism of lipids, metabolism of glucose, and cancer-related signaling pathways. Moreover, the composition of serum-derived exosomes and a whole serum was analyzed in parallel to compare the biomarker potential of both specimens. Among proteins that the most properly discriminated good and poor responders were GPLD1 (AUC = 0.85, accuracy of 74%) identified in plasma as well as C8G (AUC = 0.91, accuracy 81%), SERPINF2 (AUC = 0.91, accuracy 79%) and CFHR3 (AUC = 0.90, accuracy 81%) identified in exosomes. We found that the proteome component of serum-derived exosomes has the highest capacity to discriminate samples of patients with different responses to neo-RT when compared to the whole plasma proteome and metabolome. We concluded that the molecular components of exosomes are associated with the response of rectal cancer patients to neo-RT and could be used for the prediction of such response. |
---|