Cargando…
Outcome Prediction at Patient Level Derived from Pre-Treatment 18F-FDG PET Due to Machine Learning in Metastatic Melanoma Treated with Anti-PD1 Treatment
(1) Background: As outcome of patients with metastatic melanoma treated with anti-PD1 immunotherapy can vary in success, predictors are needed. We aimed to predict at the patients’ levels, overall survival (OS) and progression-free survival (PFS) after one year of immunotherapy, based on their pre-t...
Autores principales: | Flaus, Anthime, Habouzit, Vincent, de Leiris, Nicolas, Vuillez, Jean-Philippe, Leccia, Marie-Thérèse, Simonson, Mathilde, Perrot, Jean-Luc, Cachin, Florent, Prevot, Nathalie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870749/ https://www.ncbi.nlm.nih.gov/pubmed/35204479 http://dx.doi.org/10.3390/diagnostics12020388 |
Ejemplares similares
-
FDG PET biomarkers for prediction of survival in metastatic melanoma prior to anti-PD1 immunotherapy
por: Flaus, A., et al.
Publicado: (2021) -
Decision Tree With Only Two Musculoskeletal Sites to Diagnose Polymyalgia Rheumatica Using [(18)F]FDG PET-CT
por: Flaus, Anthime, et al.
Publicado: (2021) -
PET image enhancement using artificial intelligence for better characterization of epilepsy lesions
por: Flaus, Anthime, et al.
Publicado: (2022) -
Utility of (18)F-Fluorodeoxyglucose Positron Emission Tomography in Inflammatory Rheumatism, Particularly Polymyalgia Rheumatica: A Retrospective Study of 222 PET/CT
por: Amat, Julie, et al.
Publicado: (2020) -
Pre-training via Transfer Learning and Pretext Learning a Convolutional Neural Network for Automated Assessments of Clinical PET Image Quality
por: Hopson, Jessica B., et al.
Publicado: (2023)