Cargando…
Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators
Redundant manipulators are widely used in fields such as human-robot collaboration due to their good flexibility. To ensure efficiency and safety, the manipulator is required to avoid obstacles while tracking a desired trajectory in many tasks. Conventional methods for obstacle avoidance of redundan...
Autores principales: | Shen, Yue, Jia, Qingxuan, Huang, Zeyuan, Wang, Ruiquan, Fei, Junting, Chen, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870767/ https://www.ncbi.nlm.nih.gov/pubmed/35205573 http://dx.doi.org/10.3390/e24020279 |
Ejemplares similares
-
Bi-criteria Acceleration Level Obstacle Avoidance of Redundant Manipulator
por: Zhao, Weifeng, et al.
Publicado: (2020) -
Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators
por: Xu, Zhihao, et al.
Publicado: (2019) -
A New Noise-Tolerant Obstacle Avoidance Scheme for Motion Planning of Redundant Robot Manipulators
por: Guo, Dongsheng, et al.
Publicado: (2018) -
A Predictable Obstacle Avoidance Model Based on Geometric Configuration of Redundant Manipulators for Motion Planning
por: Ju, Fengjia, et al.
Publicado: (2023) -
Reinforcement learning-based dynamic obstacle avoidance and integration of path planning
por: Choi, Jaewan, et al.
Publicado: (2021)