Cargando…
Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels
Detection of infected kernels is important for Fusarium head blight (FHB) prevention and product quality assurance in wheat. In this study, Raman spectroscopy (RS) and deep learning networks were used for the determination of FHB-infected wheat kernels. First, the RS spectra of healthy, mild, and se...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870785/ https://www.ncbi.nlm.nih.gov/pubmed/35206055 http://dx.doi.org/10.3390/foods11040578 |
_version_ | 1784656840532951040 |
---|---|
author | Qiu, Mengqing Zheng, Shouguo Tang, Le Hu, Xujin Xu, Qingshan Zheng, Ling Weng, Shizhuang |
author_facet | Qiu, Mengqing Zheng, Shouguo Tang, Le Hu, Xujin Xu, Qingshan Zheng, Ling Weng, Shizhuang |
author_sort | Qiu, Mengqing |
collection | PubMed |
description | Detection of infected kernels is important for Fusarium head blight (FHB) prevention and product quality assurance in wheat. In this study, Raman spectroscopy (RS) and deep learning networks were used for the determination of FHB-infected wheat kernels. First, the RS spectra of healthy, mild, and severe infection kernels were measured and spectral changes and band attribution were analyzed. Then, the Inception network was improved by residual and channel attention modules to develop the recognition models of FHB infection. The Inception–attention network produced the best determination with accuracies in training set, validation set, and prediction set of 97.13%, 91.49%, and 93.62%, among all models. The average feature map of the channel clarified the important information in feature extraction, itself required to clarify the decision-making strategy. Overall, RS and the Inception–attention network provide a noninvasive, rapid, and accurate determination of FHB-infected wheat kernels and are expected to be applied to other pathogens or diseases in various crops. |
format | Online Article Text |
id | pubmed-8870785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88707852022-02-25 Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels Qiu, Mengqing Zheng, Shouguo Tang, Le Hu, Xujin Xu, Qingshan Zheng, Ling Weng, Shizhuang Foods Article Detection of infected kernels is important for Fusarium head blight (FHB) prevention and product quality assurance in wheat. In this study, Raman spectroscopy (RS) and deep learning networks were used for the determination of FHB-infected wheat kernels. First, the RS spectra of healthy, mild, and severe infection kernels were measured and spectral changes and band attribution were analyzed. Then, the Inception network was improved by residual and channel attention modules to develop the recognition models of FHB infection. The Inception–attention network produced the best determination with accuracies in training set, validation set, and prediction set of 97.13%, 91.49%, and 93.62%, among all models. The average feature map of the channel clarified the important information in feature extraction, itself required to clarify the decision-making strategy. Overall, RS and the Inception–attention network provide a noninvasive, rapid, and accurate determination of FHB-infected wheat kernels and are expected to be applied to other pathogens or diseases in various crops. MDPI 2022-02-17 /pmc/articles/PMC8870785/ /pubmed/35206055 http://dx.doi.org/10.3390/foods11040578 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qiu, Mengqing Zheng, Shouguo Tang, Le Hu, Xujin Xu, Qingshan Zheng, Ling Weng, Shizhuang Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels |
title | Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels |
title_full | Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels |
title_fullStr | Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels |
title_full_unstemmed | Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels |
title_short | Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels |
title_sort | raman spectroscopy and improved inception network for determination of fhb-infected wheat kernels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870785/ https://www.ncbi.nlm.nih.gov/pubmed/35206055 http://dx.doi.org/10.3390/foods11040578 |
work_keys_str_mv | AT qiumengqing ramanspectroscopyandimprovedinceptionnetworkfordeterminationoffhbinfectedwheatkernels AT zhengshouguo ramanspectroscopyandimprovedinceptionnetworkfordeterminationoffhbinfectedwheatkernels AT tangle ramanspectroscopyandimprovedinceptionnetworkfordeterminationoffhbinfectedwheatkernels AT huxujin ramanspectroscopyandimprovedinceptionnetworkfordeterminationoffhbinfectedwheatkernels AT xuqingshan ramanspectroscopyandimprovedinceptionnetworkfordeterminationoffhbinfectedwheatkernels AT zhengling ramanspectroscopyandimprovedinceptionnetworkfordeterminationoffhbinfectedwheatkernels AT wengshizhuang ramanspectroscopyandimprovedinceptionnetworkfordeterminationoffhbinfectedwheatkernels |