Cargando…
Deep Learning Approach to Automatize TMTV Calculations Regardless of Segmentation Methodology for Major FDG-Avid Lymphomas
The total metabolic tumor volume (TMTV) is a new prognostic factor in lymphomas that could benefit from automation with deep learning convolutional neural networks (CNN). Manual TMTV segmentations of 1218 baseline 18FDG-PET/CT have been used for training. A 3D V-NET model has been trained to generat...
Autores principales: | Revailler, Wendy, Cottereau, Anne Ségolène, Rossi, Cedric, Noyelle, Rudy, Trouillard, Thomas, Morschhauser, Franck, Casasnovas, Olivier, Thieblemont, Catherine, Le Gouill, Steven, André, Marc, Ghesquieres, Herve, Ricci, Romain, Meignan, Michel, Kanoun, Salim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870809/ https://www.ncbi.nlm.nih.gov/pubmed/35204515 http://dx.doi.org/10.3390/diagnostics12020417 |
Ejemplares similares
-
(18)F-FDG PET Maximum-Intensity Projections and Artificial Intelligence: A Win-Win Combination to Easily Measure Prognostic Biomarkers in DLBCL Patients
por: Girum, Kibrom B., et al.
Publicado: (2022) -
Deep-Learning (18)F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma
por: Capobianco, Nicolò, et al.
Publicado: (2021) -
New Approaches in Characterization of Lesions Dissemination in DLBCL Patients on Baseline PET/CT
por: Cottereau, Anne-Ségolène, et al.
Publicado: (2021) -
High-risk stage IIB Hodgkin lymphoma treated in the H10 and AHL2011 trials: total metabolic tumor volume is a useful risk factor to stratify patients at baseline
por: Rossi, Cédric, et al.
Publicado: (2022) -
ASCT vs CART for patients with relapsed LBCL in PR: role of TMTV
por: Strati, Paolo, et al.
Publicado: (2023)