Cargando…

Shannon Entropy in LS-Coupled Configuration Space for Ni-like Isoelectronic Sequence

The Shannon entropy in an LS-coupled configuration space has been calculated through a transformation from that in a jj-coupled configuration space for a Ni-like isoelectronic sequence. The sudden change of Shannon entropy, information exchange, eigenlevel anticrossing, and strong configuration inte...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Jian-Jie, Gu, Jie, Li, Jiao, Guo, Na
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870868/
https://www.ncbi.nlm.nih.gov/pubmed/35205561
http://dx.doi.org/10.3390/e24020267
Descripción
Sumario:The Shannon entropy in an LS-coupled configuration space has been calculated through a transformation from that in a jj-coupled configuration space for a Ni-like isoelectronic sequence. The sudden change of Shannon entropy, information exchange, eigenlevel anticrossing, and strong configuration interaction have been presented for adjacent levels. It is shown that eigenlevel anticrossing is a sufficient and necessary condition for the sudden change of Shannon entropy, and both of them are a sufficient condition for information exchange, which is the same as the case of the jj-coupled configuration space. It is found that the structure of sudden change from jj-coupled into LS-coupled configuration spaces through the LS-jj transformation is invariant for Shannon entropy along the isoelectronic sequence. What is more, in an LS-coupled configuration space, there are a large number of information exchanges between energy levels whether with or without strong configuration interaction, and most of the ground and single excited states of Ni-like ions are more suitable to be described by a jj-coupled or other configuration basis set instead of an LS-coupled configuration basis set according to the configuration mixing coefficients and their Shannon entropy. In this sense, Shannon entropy can also be used to measure the applicability of a configuration basis set or the purity of atomic state functions in different coupling schemes.