Cargando…
λ-Deformation: A Canonical Framework for Statistical Manifolds of Constant Curvature
This paper systematically presents the [Formula: see text]-deformation as the canonical framework of deformation to the dually flat (Hessian) geometry, which has been well established in information geometry. We show that, based on deforming the Legendre duality, all objects in the Hessian case have...
Autores principales: | Zhang, Jun, Wong, Ting-Kam Leonard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870871/ https://www.ncbi.nlm.nih.gov/pubmed/35205488 http://dx.doi.org/10.3390/e24020193 |
Ejemplares similares
-
Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature
por: Decu, Simona, et al.
Publicado: (2018) -
The δ(2,2)-Invariant on Statistical Submanifolds in Hessian Manifolds of Constant Hessian Curvature
por: Mihai, Adela, et al.
Publicado: (2020) -
Casorati Inequalities for Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature with Semi-Symmetric Metric Connection
por: Decu, Simona, et al.
Publicado: (2022) -
Manifolds of nonpositive curvature
por: Ballmann, Werner, et al.
Publicado: (1985) -
A Deformed Exponential Statistical Manifold
por: Josué Vieira, Francisca Leidmar, et al.
Publicado: (2019)