Cargando…
Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging
Background: The exact focus of computed tomography (CT)-based artificial intelligence techniques when staging liver fibrosis is still not exactly known. This study aimed to determine both the added value of splenic information to hepatic information, and the correlation between important radiomic fe...
Autores principales: | Yin, Yunchao, Yakar, Derya, Dierckx, Rudi A. J. O., Mouridsen, Kim B., Kwee, Thomas C., de Haas, Robbert J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870954/ https://www.ncbi.nlm.nih.gov/pubmed/35204639 http://dx.doi.org/10.3390/diagnostics12020550 |
Ejemplares similares
-
Liver fibrosis staging by deep learning: a visual-based explanation of diagnostic decisions of the model
por: Yin, Yunchao, et al.
Publicado: (2021) -
Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
por: Bleker, Jeroen, et al.
Publicado: (2019) -
A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
por: Bleker, Jeroen, et al.
Publicado: (2022) -
Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer
por: Bleker, Jeroen, et al.
Publicado: (2021) -
Quality of Multicenter Studies Using MRI Radiomics for Diagnosing Clinically Significant Prostate Cancer: A Systematic Review
por: Bleker, Jeroen, et al.
Publicado: (2022)