Cargando…
The Effect of p-Coumaric Acid on Browning Inhibition in Potato Polyphenol Oxidase-Catalyzed Reaction Mixtures
There has been considerable interest in using natural polyphenol oxidase (PPO) inhibitors to control browning in fruit and vegetable products. p-Coumaric acid (pCA), a common secondary metabolite of plants, has been studied as an inhibitor of PPOs/tyrosinases from several foods (e.g., mushroom, appl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870983/ https://www.ncbi.nlm.nih.gov/pubmed/35206054 http://dx.doi.org/10.3390/foods11040577 |
Sumario: | There has been considerable interest in using natural polyphenol oxidase (PPO) inhibitors to control browning in fruit and vegetable products. p-Coumaric acid (pCA), a common secondary metabolite of plants, has been studied as an inhibitor of PPOs/tyrosinases from several foods (e.g., mushroom, apple, and potato). However, studies on the use of pCA for the inhibition of PPO-initiated browning in actual food systems are limited. Therefore, a study was carried out to ascertain the efficacy of using pCA to limit PPO-initiated browning in fresh potato juice. The extent of browning inhibition by pCA was shown to be reaction system-dependent. Browning in potato juice was unexpectedly enhanced by the addition of pCA. This was interpreted as pCA acting as an alternative substrate with significantly higher browning efficiency; extent of browning under this condition was higher than that observed in the native potato juice. The addition of pCA to any of the model reaction mixtures (i.e., those containing semi-purified enzymes and substrates) significantly inhibited browning. The discrepancy in pCA effects on browning inhibition in different reaction systems is postulated to be mainly due to non-enzyme and non-substrate components in potato juice that participate in the post-PPO reaction sequences, which ultimately lead to brown color formation. |
---|