Cargando…
Regularized RKHS-Based Subspace Learning for Motor Imagery Classification
Brain–computer interface (BCI) technology allows people with disabilities to communicate with the physical environment. One of the most promising signals is the non-invasive electroencephalogram (EEG) signal. However, due to the non-stationary nature of EEGs, a subject’s signal may change over time,...
Autores principales: | Jiang, Linzhi, Liu, Shuyu, Ma, Zhengming, Lei, Wenjie, Chen, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870989/ https://www.ncbi.nlm.nih.gov/pubmed/35205490 http://dx.doi.org/10.3390/e24020195 |
Ejemplares similares
-
Scale-Dependent Signal Identification in Low-Dimensional Subspace: Motor Imagery Task Classification
por: She, Qingshan, et al.
Publicado: (2016) -
The classification of motor imagery response: an accuracy enhancement through the ensemble of random subspace k-NN
por: Rashid, Mamunur, et al.
Publicado: (2021) -
Improving Generalization Based on l(1)-Norm Regularization for EEG-Based Motor Imagery Classification
por: Zhao, Yuwei, et al.
Publicado: (2018) -
Gaussian Processes and Polynomial Chaos Expansion for Regression Problem: Linkage via the RKHS and Comparison via the KL Divergence
por: Yan, Liang, et al.
Publicado: (2018) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018)