Cargando…

Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network

Background: Left ventricle (LV) segmentation using a cardiac magnetic resonance imaging (MRI) dataset is critical for evaluating global and regional cardiac functions and diagnosing cardiovascular diseases. LV clinical metrics such as LV volume, LV mass and ejection fraction (EF) are frequently extr...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaaf, Zakarya Farea, Jamil, Muhammad Mahadi Abdul, Ambar, Radzi, Alattab, Ahmed Abdu, Yahya, Anwar Ali, Asiri, Yousef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871002/
https://www.ncbi.nlm.nih.gov/pubmed/35204504
http://dx.doi.org/10.3390/diagnostics12020414
_version_ 1784656892148056064
author Shaaf, Zakarya Farea
Jamil, Muhammad Mahadi Abdul
Ambar, Radzi
Alattab, Ahmed Abdu
Yahya, Anwar Ali
Asiri, Yousef
author_facet Shaaf, Zakarya Farea
Jamil, Muhammad Mahadi Abdul
Ambar, Radzi
Alattab, Ahmed Abdu
Yahya, Anwar Ali
Asiri, Yousef
author_sort Shaaf, Zakarya Farea
collection PubMed
description Background: Left ventricle (LV) segmentation using a cardiac magnetic resonance imaging (MRI) dataset is critical for evaluating global and regional cardiac functions and diagnosing cardiovascular diseases. LV clinical metrics such as LV volume, LV mass and ejection fraction (EF) are frequently extracted based on the LV segmentation from short-axis MRI images. Manual segmentation to assess such functions is tedious and time-consuming for medical experts to diagnose cardiac pathologies. Therefore, a fully automated LV segmentation technique is required to assist medical experts in working more efficiently. Method: This paper proposes a fully convolutional network (FCN) architecture for automatic LV segmentation from short-axis MRI images. Several experiments were conducted in the training phase to compare the performance of the network and the U-Net model with various hyper-parameters, including optimization algorithms, epochs, learning rate, and mini-batch size. In addition, a class weighting method was introduced to avoid having a high imbalance of pixels in the classes of image’s labels since the number of background pixels was significantly higher than the number of LV and myocardium pixels. Furthermore, effective image conversion with pixel normalization was applied to obtain exact features representing target organs (LV and myocardium). The segmentation models were trained and tested on a public dataset, namely the evaluation of myocardial infarction from the delayed-enhancement cardiac MRI (EMIDEC) dataset. Results: The dice metric, Jaccard index, sensitivity, and specificity were used to evaluate the network’s performance, with values of 0.93, 0.87, 0.98, and 0.94, respectively. Based on the experimental results, the proposed network outperforms the standard U-Net model and is an advanced fully automated method in terms of segmentation performance. Conclusion: This proposed method is applicable in clinical practice for doctors to diagnose cardiac diseases from short-axis MRI images.
format Online
Article
Text
id pubmed-8871002
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88710022022-02-25 Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network Shaaf, Zakarya Farea Jamil, Muhammad Mahadi Abdul Ambar, Radzi Alattab, Ahmed Abdu Yahya, Anwar Ali Asiri, Yousef Diagnostics (Basel) Article Background: Left ventricle (LV) segmentation using a cardiac magnetic resonance imaging (MRI) dataset is critical for evaluating global and regional cardiac functions and diagnosing cardiovascular diseases. LV clinical metrics such as LV volume, LV mass and ejection fraction (EF) are frequently extracted based on the LV segmentation from short-axis MRI images. Manual segmentation to assess such functions is tedious and time-consuming for medical experts to diagnose cardiac pathologies. Therefore, a fully automated LV segmentation technique is required to assist medical experts in working more efficiently. Method: This paper proposes a fully convolutional network (FCN) architecture for automatic LV segmentation from short-axis MRI images. Several experiments were conducted in the training phase to compare the performance of the network and the U-Net model with various hyper-parameters, including optimization algorithms, epochs, learning rate, and mini-batch size. In addition, a class weighting method was introduced to avoid having a high imbalance of pixels in the classes of image’s labels since the number of background pixels was significantly higher than the number of LV and myocardium pixels. Furthermore, effective image conversion with pixel normalization was applied to obtain exact features representing target organs (LV and myocardium). The segmentation models were trained and tested on a public dataset, namely the evaluation of myocardial infarction from the delayed-enhancement cardiac MRI (EMIDEC) dataset. Results: The dice metric, Jaccard index, sensitivity, and specificity were used to evaluate the network’s performance, with values of 0.93, 0.87, 0.98, and 0.94, respectively. Based on the experimental results, the proposed network outperforms the standard U-Net model and is an advanced fully automated method in terms of segmentation performance. Conclusion: This proposed method is applicable in clinical practice for doctors to diagnose cardiac diseases from short-axis MRI images. MDPI 2022-02-05 /pmc/articles/PMC8871002/ /pubmed/35204504 http://dx.doi.org/10.3390/diagnostics12020414 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shaaf, Zakarya Farea
Jamil, Muhammad Mahadi Abdul
Ambar, Radzi
Alattab, Ahmed Abdu
Yahya, Anwar Ali
Asiri, Yousef
Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
title Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
title_full Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
title_fullStr Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
title_full_unstemmed Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
title_short Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
title_sort automatic left ventricle segmentation from short-axis cardiac mri images based on fully convolutional neural network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871002/
https://www.ncbi.nlm.nih.gov/pubmed/35204504
http://dx.doi.org/10.3390/diagnostics12020414
work_keys_str_mv AT shaafzakaryafarea automaticleftventriclesegmentationfromshortaxiscardiacmriimagesbasedonfullyconvolutionalneuralnetwork
AT jamilmuhammadmahadiabdul automaticleftventriclesegmentationfromshortaxiscardiacmriimagesbasedonfullyconvolutionalneuralnetwork
AT ambarradzi automaticleftventriclesegmentationfromshortaxiscardiacmriimagesbasedonfullyconvolutionalneuralnetwork
AT alattabahmedabdu automaticleftventriclesegmentationfromshortaxiscardiacmriimagesbasedonfullyconvolutionalneuralnetwork
AT yahyaanwarali automaticleftventriclesegmentationfromshortaxiscardiacmriimagesbasedonfullyconvolutionalneuralnetwork
AT asiriyousef automaticleftventriclesegmentationfromshortaxiscardiacmriimagesbasedonfullyconvolutionalneuralnetwork