Cargando…
Machine Learning-Based Modeling of Ovarian Response and the Quantitative Evaluation of Comprehensive Impact Features
Appropriate ovarian responses to the controlled ovarian stimulation strategy is the premise for a good outcome of the in vitro fertilization cycle. With the booming of artificial intelligence, machine learning is becoming a popular and promising approach for tailoring a controlled ovarian stimulatio...
Autores principales: | Liu, Liu, Shen, Fujin, Liang, Hua, Yang, Zhe, Yang, Jing, Chen, Jiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871024/ https://www.ncbi.nlm.nih.gov/pubmed/35204580 http://dx.doi.org/10.3390/diagnostics12020492 |
Ejemplares similares
-
Prediction model of gonadotropin starting dose and its clinical application in controlled ovarian stimulation
por: Hua, Liang, et al.
Publicado: (2022) -
Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models
por: Mao, Jiashun, et al.
Publicado: (2021) -
Comprehensive Quantitative
Analysis of Ovarian and
Breast Cancer Tumor Peptidomes
por: Xu, Zhe, et al.
Publicado: (2014) -
Comprehensive Analysis of Clinical Logistic and Machine Learning-Based Models for the Evaluation of Pulmonary Nodules
por: Zhang, Kai, et al.
Publicado: (2022) -
Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images
por: Martínez-Más, José, et al.
Publicado: (2019)