Cargando…

Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases

In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We de...

Descripción completa

Detalles Bibliográficos
Autores principales: Ciardi, Matteo, Macrì, Tommaso, Cinti, Fabio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871071/
https://www.ncbi.nlm.nih.gov/pubmed/35205559
http://dx.doi.org/10.3390/e24020265
_version_ 1784656908674662400
author Ciardi, Matteo
Macrì, Tommaso
Cinti, Fabio
author_facet Ciardi, Matteo
Macrì, Tommaso
Cinti, Fabio
author_sort Ciardi, Matteo
collection PubMed
description In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions.
format Online
Article
Text
id pubmed-8871071
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88710712022-02-25 Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases Ciardi, Matteo Macrì, Tommaso Cinti, Fabio Entropy (Basel) Article In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions. MDPI 2022-02-12 /pmc/articles/PMC8871071/ /pubmed/35205559 http://dx.doi.org/10.3390/e24020265 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ciardi, Matteo
Macrì, Tommaso
Cinti, Fabio
Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases
title Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases
title_full Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases
title_fullStr Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases
title_full_unstemmed Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases
title_short Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases
title_sort zonal estimators for quasiperiodic bosonic many-body phases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871071/
https://www.ncbi.nlm.nih.gov/pubmed/35205559
http://dx.doi.org/10.3390/e24020265
work_keys_str_mv AT ciardimatteo zonalestimatorsforquasiperiodicbosonicmanybodyphases
AT macritommaso zonalestimatorsforquasiperiodicbosonicmanybodyphases
AT cintifabio zonalestimatorsforquasiperiodicbosonicmanybodyphases