Cargando…
Investigating Unfavorable Factors That Impede MALDI-TOF-Based AI in Predicting Antibiotic Resistance
The combination of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) spectra data and artificial intelligence (AI) has been introduced for rapid prediction on antibiotic susceptibility testing (AST) of Staphylococcus aureus. Based on the AI predictive probability, cases with pro...
Autores principales: | Wang, Hsin-Yao, Liu, Yu-Hsin, Tseng, Yi-Ju, Chung, Chia-Ru, Lin, Ting-Wei, Yu, Jia-Ruei, Huang, Yhu-Chering, Lu, Jang-Jih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871102/ https://www.ncbi.nlm.nih.gov/pubmed/35204505 http://dx.doi.org/10.3390/diagnostics12020413 |
Ejemplares similares
-
Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra
por: Chung, Chia-Ru, et al.
Publicado: (2023) -
Rapid Antibiotic Resistance Serial Prediction in Staphylococcus aureus Based on Large-Scale MALDI-TOF Data by Applying XGBoost in Multi-Label Learning
por: Zhang, Jiahong, et al.
Publicado: (2022) -
Efficiently Predicting Vancomycin Resistance of Enterococcus Faecium From MALDI-TOF MS Spectra Using a Deep Learning-Based Approach
por: Wang, Hsin-Yao, et al.
Publicado: (2022) -
Application of a MALDI-TOF analysis platform (ClinProTools) for rapid and preliminary report of MRSA sequence types in Taiwan
por: Wang, Hsin-Yao, et al.
Publicado: (2018) -
A Novel Preprocessing Method Using Hilbert Huang Transform for MALDI-TOF and SELDI-TOF Mass Spectrometry Data
por: Wu, Li-Ching, et al.
Publicado: (2010)