Cargando…
Normalized Augmented Inverse Probability Weighting with Neural Network Predictions
The estimation of average treatment effect (ATE) as a causal parameter is carried out in two steps, where in the first step, the treatment and outcome are modeled to incorporate the potential confounders, and in the second step, the predictions are inserted into the ATE estimators such as the augmen...
Autores principales: | Rostami, Mehdi, Saarela, Olli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871185/ https://www.ncbi.nlm.nih.gov/pubmed/35205474 http://dx.doi.org/10.3390/e24020179 |
Ejemplares similares
-
Targeted L(1)-Regularization and Joint Modeling of Neural Networks for Causal Inference
por: Rostami, Mehdi, et al.
Publicado: (2022) -
Augmented Inverse Probability Weighting and the Double Robustness Property
por: Kurz, Christoph F.
Publicado: (2021) -
Estimation of marginal structural models under irregular visits and unmeasured confounder: calibrated inverse probability weights
por: Kalia, Sumeet, et al.
Publicado: (2023) -
On inverse probability-weighted estimators in the presence of interference
por: Liu, L., et al.
Publicado: (2016) -
Combining Multiple Imputation and Inverse-Probability
Weighting
por: Seaman, Shaun R, et al.
Publicado: (2012)