Cargando…
Representation Learning for Dynamic Functional Connectivities via Variational Dynamic Graph Latent Variable Models
Latent variable models (LVMs) for neural population spikes have revealed informative low-dimensional dynamics about the neural data and have become powerful tools for analyzing and interpreting neural activity. However, these approaches are unable to determine the neurophysiological meaning of the i...
Autores principales: | Huang, Yicong, Yu, Zhuliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871213/ https://www.ncbi.nlm.nih.gov/pubmed/35205448 http://dx.doi.org/10.3390/e24020152 |
Ejemplares similares
-
Understanding microbiome dynamics via interpretable graph representation learning
por: Melnyk, Kateryna, et al.
Publicado: (2023) -
Dynamic Heterogeneous User Generated Contents-Driven Relation Assessment via Graph Representation Learning
por: Huang, Ru, et al.
Publicado: (2022) -
TemporalGAT: Attention-Based Dynamic Graph Representation Learning
por: Fathy, Ahmed, et al.
Publicado: (2020) -
Graph representation learning
por: Hamilton, William L
Publicado: (2020) -
Dynamics of epidemic spreading on connected graphs
por: Besse, Christophe, et al.
Publicado: (2021)